Cargando…
Revealing the activation mechanism of autoinhibited RalF by integrated simulation and experimental approaches
RalF is an Arf GEF from Legionella pneumophilia, the bacterium that causes severe pneumonia. In its crystal structure, RalF is in the autoinhibited form. A large-scale domain motion is expected to lift the autoinhibition, the mechanism of which is still unknown. Since RalF is activated in the presen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115643/ https://www.ncbi.nlm.nih.gov/pubmed/33980916 http://dx.doi.org/10.1038/s41598-021-89169-5 |
Sumario: | RalF is an Arf GEF from Legionella pneumophilia, the bacterium that causes severe pneumonia. In its crystal structure, RalF is in the autoinhibited form. A large-scale domain motion is expected to lift the autoinhibition, the mechanism of which is still unknown. Since RalF is activated in the presence of the membrane, its active structure and the structure of the RalF-Arf1 complex could not have been determined experimentally. On the simulation side, it has been proven that classical Molecular Dynamics (MD) alone is not efficient enough to map motions of such amplitude and determine the active conformation of RalF. In this article, using Molecular Dynamics with excited Normal Modes (MDeNM) combined with previous experimental findings we were able to determine the active RalF structure and the structure of the RalF-Arf1 complex in the presence of the membrane, bridging the gap between experiments and simulation. |
---|