Cargando…
Development and validation of smartwatch-based activity recognition models for rigging crew workers on cable logging operations
Analysis of high-resolution inertial sensor and global navigation satellite system (GNSS) data collected by mobile and wearable devices is a relatively new methodology in forestry and safety research that provides opportunities for modeling work activities in greater detail than traditional time stu...
Autores principales: | Zimbelman, Eloise G., Keefe, Robert F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115790/ https://www.ncbi.nlm.nih.gov/pubmed/33979355 http://dx.doi.org/10.1371/journal.pone.0250624 |
Ejemplares similares
-
Characterizing Rigging Crew Proximity to Hazards on Cable Logging Operations Using GNSS-RF: Effect of GNSS Positioning Error on Worker Safety Status
por: Wempe, Ann M., et al.
Publicado: (2017) -
Hazards in Motion: Development of Mobile Geofences for Use in Logging Safety
por: Zimbelman, Eloise G., et al.
Publicado: (2017) -
Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation
por: Zimbelman, Eloise G., et al.
Publicado: (2018) -
Lost in the woods: Forest vegetation, and not topography, most affects the connectivity of mesh radio networks for public safety
por: Zimbelman, Eloise G., et al.
Publicado: (2022) -
Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study
por: Davoudi, Anis, et al.
Publicado: (2019)