Cargando…
Identifying novel β-lactamase substrate activity through in silico prediction of antimicrobial resistance
Diagnosing antimicrobial resistance (AMR) in the clinic is based on empirical evidence and current gold standard laboratory phenotypic methods. Genotypic methods have the potential advantages of being faster and cheaper, and having improved mechanistic resolution over phenotypic methods. We generate...
Autores principales: | Tsang, Kara K., Maguire, Finlay, Zubyk, Haley L., Chou, Sommer, Edalatmand, Arman, Wright, Gerard D., Beiko, Robert G., McArthur, Andrew G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115898/ https://www.ncbi.nlm.nih.gov/pubmed/33416461 http://dx.doi.org/10.1099/mgen.0.000500 |
Ejemplares similares
-
CARD*Shark: automated prioritization of literature curation for the Comprehensive Antibiotic Resistance Database
por: Edalatmand, Arman, et al.
Publicado: (2023) -
Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning
por: Maguire, Finlay, et al.
Publicado: (2019) -
CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database
por: Alcock, Brian P, et al.
Publicado: (2020) -
Datasets for benchmarking antimicrobial resistance genes in bacterial metagenomic and whole genome sequencing
por: Raphenya, Amogelang R., et al.
Publicado: (2022) -
CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database
por: Alcock, Brian P, et al.
Publicado: (2022)