Cargando…
Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients
INTRODUCTION: We aimed to assess risk factors for multidrug-resistant Gram-negative bacilli (MDR-GNB) from a large amount of data retrieved from electronic health records (EHRs) and determine whether machine learning (ML) may be useful in assessing the risk of MDR-GNB infection at febrile neutropeni...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Healthcare
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116385/ https://www.ncbi.nlm.nih.gov/pubmed/33860912 http://dx.doi.org/10.1007/s40121-021-00438-2 |
_version_ | 1783691387055636480 |
---|---|
author | Garcia-Vidal, Carolina Puerta-Alcalde, Pedro Cardozo, Celia Orellana, Miquel A. Besanson, Gaston Lagunas, Jaime Marco, Francesc Del Rio, Ana Martínez, Jose A. Chumbita, Mariana Garcia-Pouton, Nicole Mensa, Josep Rovira, Montserrat Esteve, Jordi Soriano, Alex |
author_facet | Garcia-Vidal, Carolina Puerta-Alcalde, Pedro Cardozo, Celia Orellana, Miquel A. Besanson, Gaston Lagunas, Jaime Marco, Francesc Del Rio, Ana Martínez, Jose A. Chumbita, Mariana Garcia-Pouton, Nicole Mensa, Josep Rovira, Montserrat Esteve, Jordi Soriano, Alex |
author_sort | Garcia-Vidal, Carolina |
collection | PubMed |
description | INTRODUCTION: We aimed to assess risk factors for multidrug-resistant Gram-negative bacilli (MDR-GNB) from a large amount of data retrieved from electronic health records (EHRs) and determine whether machine learning (ML) may be useful in assessing the risk of MDR-GNB infection at febrile neutropenia (FN) onset. METHODS: Retrospective study of almost 7 million pieces of structured data from all consecutive episodes of FN in hematological patients in a tertiary hospital in Barcelona (January 2008–December 2017). Conventional multivariate analysis and ML algorithms (random forest, gradient boosting machine, XGBoost, and GLM) were done. RESULTS: A total of 3235 episodes of FN in 349 patients were documented; MDR-GNB caused 180 (5.6%) infections in 132 patients. The most frequent MDR-GNBs were MDR-Pseudomonas aeruginosa (53%) and extended-spectrum beta-lactamase-producing Enterobacterales (46%). According to conventional logistic regression analysis, independent factors associated with MDR-GNB infection were age older than 45 years (OR 2.07; 95% CI 1.31–3.24), prior antibiotics (2.62; 1.39–4.92), first-ever FN in this hospitalization (2.94; 1.33–6.52), prior hospitalizations for FN (1.72; 1.02–2.89); at least 15 prior hospital visits (2.65; 1.31–5.33), high-risk hematological diseases (3.62; 1.12–11.67), and hospitalization in a room formerly occupied by patients with MDR-GNB isolation (1.69; 1.20–2.38). ML algorithms achieved the following AUC and F1 score for MDR-GNB prediction: random forest, 0.79–0.9711; GMB, 0.79–0.9705; XGBoost, 0.79–0.9670; and GLM, 0.78–0.9716. CONCLUSION: Data generated in EHRs proved useful in assessing risk factors for MDR-GNB infections in patients with FN. The great number of analyzed variables allowed us to identify new factors related to MDR infection, as well as to train ML algorithms for infection predictions. This information may be used by clinicians to make better clinical decisions. |
format | Online Article Text |
id | pubmed-8116385 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Healthcare |
record_format | MEDLINE/PubMed |
spelling | pubmed-81163852021-05-14 Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients Garcia-Vidal, Carolina Puerta-Alcalde, Pedro Cardozo, Celia Orellana, Miquel A. Besanson, Gaston Lagunas, Jaime Marco, Francesc Del Rio, Ana Martínez, Jose A. Chumbita, Mariana Garcia-Pouton, Nicole Mensa, Josep Rovira, Montserrat Esteve, Jordi Soriano, Alex Infect Dis Ther Original Research INTRODUCTION: We aimed to assess risk factors for multidrug-resistant Gram-negative bacilli (MDR-GNB) from a large amount of data retrieved from electronic health records (EHRs) and determine whether machine learning (ML) may be useful in assessing the risk of MDR-GNB infection at febrile neutropenia (FN) onset. METHODS: Retrospective study of almost 7 million pieces of structured data from all consecutive episodes of FN in hematological patients in a tertiary hospital in Barcelona (January 2008–December 2017). Conventional multivariate analysis and ML algorithms (random forest, gradient boosting machine, XGBoost, and GLM) were done. RESULTS: A total of 3235 episodes of FN in 349 patients were documented; MDR-GNB caused 180 (5.6%) infections in 132 patients. The most frequent MDR-GNBs were MDR-Pseudomonas aeruginosa (53%) and extended-spectrum beta-lactamase-producing Enterobacterales (46%). According to conventional logistic regression analysis, independent factors associated with MDR-GNB infection were age older than 45 years (OR 2.07; 95% CI 1.31–3.24), prior antibiotics (2.62; 1.39–4.92), first-ever FN in this hospitalization (2.94; 1.33–6.52), prior hospitalizations for FN (1.72; 1.02–2.89); at least 15 prior hospital visits (2.65; 1.31–5.33), high-risk hematological diseases (3.62; 1.12–11.67), and hospitalization in a room formerly occupied by patients with MDR-GNB isolation (1.69; 1.20–2.38). ML algorithms achieved the following AUC and F1 score for MDR-GNB prediction: random forest, 0.79–0.9711; GMB, 0.79–0.9705; XGBoost, 0.79–0.9670; and GLM, 0.78–0.9716. CONCLUSION: Data generated in EHRs proved useful in assessing risk factors for MDR-GNB infections in patients with FN. The great number of analyzed variables allowed us to identify new factors related to MDR infection, as well as to train ML algorithms for infection predictions. This information may be used by clinicians to make better clinical decisions. Springer Healthcare 2021-04-16 2021-06 /pmc/articles/PMC8116385/ /pubmed/33860912 http://dx.doi.org/10.1007/s40121-021-00438-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Original Research Garcia-Vidal, Carolina Puerta-Alcalde, Pedro Cardozo, Celia Orellana, Miquel A. Besanson, Gaston Lagunas, Jaime Marco, Francesc Del Rio, Ana Martínez, Jose A. Chumbita, Mariana Garcia-Pouton, Nicole Mensa, Josep Rovira, Montserrat Esteve, Jordi Soriano, Alex Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients |
title | Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients |
title_full | Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients |
title_fullStr | Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients |
title_full_unstemmed | Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients |
title_short | Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients |
title_sort | machine learning to assess the risk of multidrug-resistant gram-negative bacilli infections in febrile neutropenic hematological patients |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116385/ https://www.ncbi.nlm.nih.gov/pubmed/33860912 http://dx.doi.org/10.1007/s40121-021-00438-2 |
work_keys_str_mv | AT garciavidalcarolina machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT puertaalcaldepedro machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT cardozocelia machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT orellanamiquela machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT besansongaston machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT lagunasjaime machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT marcofrancesc machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT delrioana machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT martinezjosea machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT chumbitamariana machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT garciapoutonnicole machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT mensajosep machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT roviramontserrat machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT estevejordi machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT sorianoalex machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients AT machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients |