Cargando…

Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients

INTRODUCTION: We aimed to assess risk factors for multidrug-resistant Gram-negative bacilli (MDR-GNB) from a large amount of data retrieved from electronic health records (EHRs) and determine whether machine learning (ML) may be useful in assessing the risk of MDR-GNB infection at febrile neutropeni...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia-Vidal, Carolina, Puerta-Alcalde, Pedro, Cardozo, Celia, Orellana, Miquel A., Besanson, Gaston, Lagunas, Jaime, Marco, Francesc, Del Rio, Ana, Martínez, Jose A., Chumbita, Mariana, Garcia-Pouton, Nicole, Mensa, Josep, Rovira, Montserrat, Esteve, Jordi, Soriano, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Healthcare 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116385/
https://www.ncbi.nlm.nih.gov/pubmed/33860912
http://dx.doi.org/10.1007/s40121-021-00438-2
_version_ 1783691387055636480
author Garcia-Vidal, Carolina
Puerta-Alcalde, Pedro
Cardozo, Celia
Orellana, Miquel A.
Besanson, Gaston
Lagunas, Jaime
Marco, Francesc
Del Rio, Ana
Martínez, Jose A.
Chumbita, Mariana
Garcia-Pouton, Nicole
Mensa, Josep
Rovira, Montserrat
Esteve, Jordi
Soriano, Alex
author_facet Garcia-Vidal, Carolina
Puerta-Alcalde, Pedro
Cardozo, Celia
Orellana, Miquel A.
Besanson, Gaston
Lagunas, Jaime
Marco, Francesc
Del Rio, Ana
Martínez, Jose A.
Chumbita, Mariana
Garcia-Pouton, Nicole
Mensa, Josep
Rovira, Montserrat
Esteve, Jordi
Soriano, Alex
author_sort Garcia-Vidal, Carolina
collection PubMed
description INTRODUCTION: We aimed to assess risk factors for multidrug-resistant Gram-negative bacilli (MDR-GNB) from a large amount of data retrieved from electronic health records (EHRs) and determine whether machine learning (ML) may be useful in assessing the risk of MDR-GNB infection at febrile neutropenia (FN) onset. METHODS: Retrospective study of almost 7 million pieces of structured data from all consecutive episodes of FN in hematological patients in a tertiary hospital in Barcelona (January 2008–December 2017). Conventional multivariate analysis and ML algorithms (random forest, gradient boosting machine, XGBoost, and GLM) were done. RESULTS: A total of 3235 episodes of FN in 349 patients were documented; MDR-GNB caused 180 (5.6%) infections in 132 patients. The most frequent MDR-GNBs were MDR-Pseudomonas aeruginosa (53%) and extended-spectrum beta-lactamase-producing Enterobacterales (46%). According to conventional logistic regression analysis, independent factors associated with MDR-GNB infection were age older than 45 years (OR 2.07; 95% CI 1.31–3.24), prior antibiotics (2.62; 1.39–4.92), first-ever FN in this hospitalization (2.94; 1.33–6.52), prior hospitalizations for FN (1.72; 1.02–2.89); at least 15 prior hospital visits (2.65; 1.31–5.33), high-risk hematological diseases (3.62; 1.12–11.67), and hospitalization in a room formerly occupied by patients with MDR-GNB isolation (1.69; 1.20–2.38). ML algorithms achieved the following AUC and F1 score for MDR-GNB prediction: random forest, 0.79–0.9711; GMB, 0.79–0.9705; XGBoost, 0.79–0.9670; and GLM, 0.78–0.9716. CONCLUSION: Data generated in EHRs proved useful in assessing risk factors for MDR-GNB infections in patients with FN. The great number of analyzed variables allowed us to identify new factors related to MDR infection, as well as to train ML algorithms for infection predictions. This information may be used by clinicians to make better clinical decisions.
format Online
Article
Text
id pubmed-8116385
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Healthcare
record_format MEDLINE/PubMed
spelling pubmed-81163852021-05-14 Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients Garcia-Vidal, Carolina Puerta-Alcalde, Pedro Cardozo, Celia Orellana, Miquel A. Besanson, Gaston Lagunas, Jaime Marco, Francesc Del Rio, Ana Martínez, Jose A. Chumbita, Mariana Garcia-Pouton, Nicole Mensa, Josep Rovira, Montserrat Esteve, Jordi Soriano, Alex Infect Dis Ther Original Research INTRODUCTION: We aimed to assess risk factors for multidrug-resistant Gram-negative bacilli (MDR-GNB) from a large amount of data retrieved from electronic health records (EHRs) and determine whether machine learning (ML) may be useful in assessing the risk of MDR-GNB infection at febrile neutropenia (FN) onset. METHODS: Retrospective study of almost 7 million pieces of structured data from all consecutive episodes of FN in hematological patients in a tertiary hospital in Barcelona (January 2008–December 2017). Conventional multivariate analysis and ML algorithms (random forest, gradient boosting machine, XGBoost, and GLM) were done. RESULTS: A total of 3235 episodes of FN in 349 patients were documented; MDR-GNB caused 180 (5.6%) infections in 132 patients. The most frequent MDR-GNBs were MDR-Pseudomonas aeruginosa (53%) and extended-spectrum beta-lactamase-producing Enterobacterales (46%). According to conventional logistic regression analysis, independent factors associated with MDR-GNB infection were age older than 45 years (OR 2.07; 95% CI 1.31–3.24), prior antibiotics (2.62; 1.39–4.92), first-ever FN in this hospitalization (2.94; 1.33–6.52), prior hospitalizations for FN (1.72; 1.02–2.89); at least 15 prior hospital visits (2.65; 1.31–5.33), high-risk hematological diseases (3.62; 1.12–11.67), and hospitalization in a room formerly occupied by patients with MDR-GNB isolation (1.69; 1.20–2.38). ML algorithms achieved the following AUC and F1 score for MDR-GNB prediction: random forest, 0.79–0.9711; GMB, 0.79–0.9705; XGBoost, 0.79–0.9670; and GLM, 0.78–0.9716. CONCLUSION: Data generated in EHRs proved useful in assessing risk factors for MDR-GNB infections in patients with FN. The great number of analyzed variables allowed us to identify new factors related to MDR infection, as well as to train ML algorithms for infection predictions. This information may be used by clinicians to make better clinical decisions. Springer Healthcare 2021-04-16 2021-06 /pmc/articles/PMC8116385/ /pubmed/33860912 http://dx.doi.org/10.1007/s40121-021-00438-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Original Research
Garcia-Vidal, Carolina
Puerta-Alcalde, Pedro
Cardozo, Celia
Orellana, Miquel A.
Besanson, Gaston
Lagunas, Jaime
Marco, Francesc
Del Rio, Ana
Martínez, Jose A.
Chumbita, Mariana
Garcia-Pouton, Nicole
Mensa, Josep
Rovira, Montserrat
Esteve, Jordi
Soriano, Alex
Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients
title Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients
title_full Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients
title_fullStr Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients
title_full_unstemmed Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients
title_short Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients
title_sort machine learning to assess the risk of multidrug-resistant gram-negative bacilli infections in febrile neutropenic hematological patients
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116385/
https://www.ncbi.nlm.nih.gov/pubmed/33860912
http://dx.doi.org/10.1007/s40121-021-00438-2
work_keys_str_mv AT garciavidalcarolina machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT puertaalcaldepedro machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT cardozocelia machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT orellanamiquela machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT besansongaston machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT lagunasjaime machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT marcofrancesc machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT delrioana machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT martinezjosea machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT chumbitamariana machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT garciapoutonnicole machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT mensajosep machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT roviramontserrat machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT estevejordi machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT sorianoalex machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients
AT machinelearningtoassesstheriskofmultidrugresistantgramnegativebacilliinfectionsinfebrileneutropenichematologicalpatients