Cargando…

Nickel–Cobalt Hydroxides with Tunable Thin-Layer Nanosheets for High-Performance Supercapacitor Electrode

Layered double hydroxides as typical supercapacitor electrode materials can exhibit superior energy storage performance if their structures are well regulated. In this work, a simple one-step hydrothermal method is used to prepare diverse nickel–cobalt layered double hydroxides (NiCo-LDHs), in which...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Luomeng, Xia, Hui, Liu, Shaobo, Zhou, Yishan, Zhao, Yuefeng, Xie, Wenke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116422/
https://www.ncbi.nlm.nih.gov/pubmed/33978836
http://dx.doi.org/10.1186/s11671-021-03543-w
Descripción
Sumario:Layered double hydroxides as typical supercapacitor electrode materials can exhibit superior energy storage performance if their structures are well regulated. In this work, a simple one-step hydrothermal method is used to prepare diverse nickel–cobalt layered double hydroxides (NiCo-LDHs), in which the different contents of urea are used to regulate the different nanostructures of NiCo-LDHs. The results show that the decrease in urea content can effectively improve the dispersibility, adjust the thickness and optimize the internal pore structures of NiCo-LDHs, thereby enhancing their capacitance performance. When the content of urea is reduced from 0.03 to 0.0075 g under a fixed precursor materials mass ratio of nickel (0.06 g) to cobalt (0.02 g) of 3:1, the prepared sample NiCo-LDH-1 exhibits the thickness of 1.62 nm, and the clear thin-layer nanosheet structures and a large number of surface pores are formed, which is beneficial to the transmission of ions into the electrode material. After being prepared as a supercapacitor electrode, the NiCo-LDH-1 displays an ultra-high specific capacitance of 3982.5 F g(−1) under the current density of 1 A g(−1) and high capacitance retention above 93.6% after 1000 cycles of charging and discharging at a high current density of 10 A g(−1). The excellent electrochemical performance of NiCo-LDH-1 is proved by assembling two-electrode asymmetric supercapacitor with carbon spheres, displaying the specific capacitance of 95 F g(−1) at 1 A g(−1) with the capacitance retention of 78% over 1000 cycles. The current work offers a facile way to control the nanostructure of NiCo-LDHs, confirms the important affection of urea on enhancing capacitive performance for supercapacitor electrode and provides the high possibility for the development of high-performance supercapacitors.