Cargando…
Improved barnacles mating optimizer algorithm for feature selection and support vector machine optimization
With the rapid development of computer technology, data collection becomes easier, and data object presents more complex. Data analysis method based on machine learning is an important, active, and multi-disciplinarily research field. Support vector machine (SVM) is one of the most powerful and fast...
Autores principales: | Jia, Heming, Sun, Kangjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116444/ https://www.ncbi.nlm.nih.gov/pubmed/34002110 http://dx.doi.org/10.1007/s10044-021-00985-x |
Ejemplares similares
-
Barnacles Mating Optimizer Algorithm to Extract the Parameters of the Photovoltaic Cells and Panels
por: Madhiarasan, Manoharan, et al.
Publicado: (2022) -
Magnetic anomaly inversion through the novel barnacles mating optimization algorithm
por: Ai, Hanbing, et al.
Publicado: (2022) -
Barnacles Mating Optimizer with Deep Transfer Learning Enabled Biomedical Malaria Parasite Detection and Classification
por: Dutta, Ashit Kumar, et al.
Publicado: (2022) -
Support vector machines: optimization based theory, algorithms, and extensions
por: Deng, Naiyang, et al.
Publicado: (2013) -
Support Vector Machine Weather Prediction Technology Based on the Improved Quantum Optimization Algorithm
por: Zhang, Jinlei, et al.
Publicado: (2021)