Cargando…
A Deep Graph Network–Enhanced Sampling Approach to Efficiently Explore the Space of Reduced Representations of Proteins
The limits of molecular dynamics (MD) simulations of macromolecules are steadily pushed forward by the relentless development of computer architectures and algorithms. The consequent explosion in the number and extent of MD trajectories induces the need for automated methods to rationalize the raw d...
Autores principales: | Errica, Federico, Giulini, Marco, Bacciu, Davide, Menichetti, Roberto, Micheli, Alessio, Potestio, Raffaello |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116519/ https://www.ncbi.nlm.nih.gov/pubmed/33996896 http://dx.doi.org/10.3389/fmolb.2021.637396 |
Ejemplares similares
-
Catastrophic Forgetting in Deep Graph Networks: A Graph Classification Benchmark
por: Carta, Antonio, et al.
Publicado: (2022) -
From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules
por: Giulini, Marco, et al.
Publicado: (2021) -
A journey through mapping space: characterising the statistical and metric properties of reduced representations of macromolecules
por: Menichetti, Roberto, et al.
Publicado: (2021) -
Hierarchical Graph Representation of Pharmacophore Models
por: Arthur, Garon, et al.
Publicado: (2020) -
DESP: Deep Enhanced Sampling of Proteins’ Conformation Spaces Using AI-Inspired Biasing Forces
por: Salawu, Emmanuel Oluwatobi
Publicado: (2021)