Cargando…
Time-to-Death Longitudinal Characterization of Clinical Variables and Longitudinal Prediction of Mortality in COVID-19 Patients: A Two-Center Study
Objectives: To characterize the temporal characteristics of clinical variables with time lock to mortality and build a predictive model of mortality associated with COVID-19 using clinical variables. Design: Retrospective cohort study of the temporal characteristics of clinical variables with time l...
Autores principales: | Chen, Anne, Zhao, Zirun, Hou, Wei, Singer, Adam J., Li, Haifang, Duong, Tim Q. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116568/ https://www.ncbi.nlm.nih.gov/pubmed/33996864 http://dx.doi.org/10.3389/fmed.2021.661940 |
Ejemplares similares
-
Machining learning predicts the need for escalated care and mortality in COVID-19 patients from clinical variables
por: Hou, Wei, et al.
Publicado: (2021) -
Deep learning of longitudinal chest X-ray and clinical variables predicts duration on ventilator and mortality in COVID-19 patients
por: Duanmu, Hongyi, et al.
Publicado: (2022) -
Prediction model and risk scores of ICU admission and mortality in COVID-19
por: Zhao, Zirun, et al.
Publicado: (2020) -
Longitudinal Chest X-ray Scores and their Relations with Clinical Variables and Outcomes in COVID-19 Patients
por: Shen, Beiyi, et al.
Publicado: (2023) -
Longitudinal prediction of hospital-acquired acute kidney injury in COVID-19: a two-center study
por: Lu, Justin Y., et al.
Publicado: (2021)