Cargando…
Imaging Features by Machine Learning for Quantification of Optic Disc Changes and Impact on Choroidal Thickness in Young Myopic Patients
Purpose: To construct quantifiable models of imaging features by machine learning describing early changes of optic disc and peripapillary region, and to explore their performance as early indicators for choroidal thickness (ChT) in young myopic patients. Methods: Eight hundred and ninety six subjec...
Autores principales: | Sun, Dandan, Du, Yuchen, Chen, Qiuying, Ye, Luyao, Chen, Huai, Li, Menghan, He, Jiangnan, Zhu, Jianfeng, Wang, Lisheng, Fan, Ying, Xu, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116583/ https://www.ncbi.nlm.nih.gov/pubmed/33996860 http://dx.doi.org/10.3389/fmed.2021.657566 |
Ejemplares similares
-
Relationship Between Paravascular Abnormalities and Choroidal Thickness in Young Highly Myopic Adults
por: Li, Menghan, et al.
Publicado: (2022) -
Choroid automatic segmentation and thickness quantification on swept-source optical coherence tomography images of highly myopic patients
por: Li, Menghan, et al.
Publicado: (2022) -
Effects of Atropine Treatment on Choroidal Thickness in Myopic Children
por: Ye, Luyao, et al.
Publicado: (2020) -
Automatic identification of myopic maculopathy related imaging features in optic disc region via machine learning methods
por: Du, Yuchen, et al.
Publicado: (2021) -
Correction to: Automatic identification of myopic maculopathy related imaging features in optic disc region via machine learning methods
por: Du, Yuchen, et al.
Publicado: (2021)