Cargando…
Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation
Segmentation of brain images from Magnetic Resonance Images (MRI) is an indispensable step in clinical practice. Morphological changes of sub-cortical brain structures and quantification of brain lesions are considered biomarkers of neurological and neurodegenerative disorders and used for diagnosis...
Autores principales: | Kushibar, Kaisar, Salem, Mostafa, Valverde, Sergi, Rovira, Àlex, Salvi, Joaquim, Oliver, Arnau, Lladó, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116893/ https://www.ncbi.nlm.nih.gov/pubmed/33994917 http://dx.doi.org/10.3389/fnins.2021.608808 |
Ejemplares similares
-
Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction
por: Kushibar, Kaisar, et al.
Publicado: (2019) -
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
por: Valverde, Sergi, et al.
Publicado: (2018) -
A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2017) -
A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2019) -
Improving the detection of autism spectrum disorder by combining structural and functional MRI information
por: Rakić, Mladen, et al.
Publicado: (2020)