Cargando…
Radiomics-Based Features for Prediction of Histological Subtypes in Central Lung Cancer
OBJECTIVES: To evaluate the effectiveness of radiomic features on classifying histological subtypes of central lung cancer in contrast-enhanced CT (CECT) images. MATERIALS AND METHODS: A total of 200 patients with radiologically defined central lung cancer were recruited. All patients underwent dual...
Autores principales: | Li, Huanhuan, Gao, Long, Ma, He, Arefan, Dooman, He, Jiachuan, Wang, Jiaqi, Liu, Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117140/ https://www.ncbi.nlm.nih.gov/pubmed/33996583 http://dx.doi.org/10.3389/fonc.2021.658887 |
Ejemplares similares
-
Identifying Prognostic Markers From Clinical, Radiomics, and Deep Learning Imaging Features for Gastric Cancer Survival Prediction
por: Hao, Degan, et al.
Publicado: (2022) -
A CT-based radiomics model for predicting renal capsule invasion in renal cell carcinoma
por: Yang, Lu, et al.
Publicado: (2022) -
Machine Learning for Histologic Subtype Classification of Non-Small Cell Lung Cancer: A Retrospective Multicenter Radiomics Study
por: Yang, Fengchang, et al.
Publicado: (2021) -
Preoperative Nomogram for Differentiation of Histological Subtypes in Ovarian Cancer Based on Computer Tomography Radiomics
por: Zhu, Haiyan, et al.
Publicado: (2021) -
Diffusion-weighted imaging-based radiomics in epithelial ovarian tumors: Assessment of histologic subtype
por: Xu, Yi, et al.
Publicado: (2022)