Cargando…
Predictability of COVID-19 worldwide lethality using permutation-information theory quantifiers
This paper examines the predictability of COVID-19 worldwide lethality considering 43 countries. Based on the values inherent to Permutation entropy ([Formula: see text]) and Fisher information measure ([Formula: see text]), we apply the Shannon-Fisher causality plane (SFCP), which allows us to quan...
Autores principales: | Fernandes, Leonardo H.S., Araujo, Fernando H.A., Silva, Maria A.R., Acioli-Santos, Bartolomeu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117539/ https://www.ncbi.nlm.nih.gov/pubmed/34002129 http://dx.doi.org/10.1016/j.rinp.2021.104306 |
Ejemplares similares
-
Electromyographic Permutation Entropy Quantifies Diaphragmatic Denervation and Reinnervation
por: Kramer, Christopher, et al.
Publicado: (2014) -
Magic informationally complete POVMs with permutations
por: Planat, Michel, et al.
Publicado: (2017) -
Insights from the (in)efficiency of Chinese sectoral indices during COVID-19
por: Fernandes, Leonardo H.S., et al.
Publicado: (2021) -
Permutation tests for complex data: theory, applications and software
por: Pesarin, Fortunato, et al.
Publicado: (2010) -
Permutation Entropy and Statistical Complexity Analysis of Brazilian Agricultural Commodities
por: de Araujo, Fernando Henrique Antunes, et al.
Publicado: (2019)