Cargando…
Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study
Deep generative models have shown the ability to devise both valid and novel chemistry, which could significantly accelerate the identification of bioactive compounds. Many current models, however, use molecular descriptors or ligand-based predictive methods to guide molecule generation towards a de...
Autores principales: | Thomas, Morgan, Smith, Robert T., O’Boyle, Noel M., de Graaf, Chris, Bender, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117600/ https://www.ncbi.nlm.nih.gov/pubmed/33985583 http://dx.doi.org/10.1186/s13321-021-00516-0 |
Ejemplares similares
-
Augmented Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule generation
por: Thomas, Morgan, et al.
Publicado: (2022) -
Function-specific virtual screening for GPCR ligands using a combined scoring method
por: Kooistra, Albert J., et al.
Publicado: (2016) -
Understanding Ligand Binding Selectivity in a Prototypical
GPCR Family
por: Mattedi, Giulio, et al.
Publicado: (2019) -
In Silico Veritas: The Pitfalls and Challenges of Predicting GPCR-Ligand Interactions
por: Roumen, Luc, et al.
Publicado: (2011) -
Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI
por: O’Boyle, Noel M
Publicado: (2012)