Cargando…
CancerSiamese: one-shot learning for predicting primary and metastatic tumor types unseen during model training
BACKGROUND: The state-of-the-art deep learning based cancer type prediction can only predict cancer types whose samples are available during the training where the sample size is commonly large. In this paper, we consider how to utilize the existing training samples to predict cancer types unseen du...
Autores principales: | Mostavi, Milad, Chiu, Yu-Chiao, Chen, Yidong, Huang, Yufei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117642/ https://www.ncbi.nlm.nih.gov/pubmed/33980137 http://dx.doi.org/10.1186/s12859-021-04157-w |
Ejemplares similares
-
Convolutional neural network models for cancer type prediction based on gene expression
por: Mostavi, Milad, et al.
Publicado: (2020) -
One shot ancient character recognition with siamese similarity network
por: Liu, Xuxing, et al.
Publicado: (2022) -
A Few-Shot Learning-Based Siamese Capsule Network for Intrusion Detection with Imbalanced Training Data
por: Wang, Zu-Min, et al.
Publicado: (2021) -
Cross-domain few-shot learning based on pseudo-Siamese neural network
por: Gong, Yuxuan, et al.
Publicado: (2023) -
A Siamese Transformer Network for Zero-Shot Ancient Coin Classification
por: Guo, Zhongliang, et al.
Publicado: (2023)