Cargando…
Red blood cell phenotyping from 3D confocal images using artificial neural networks
The investigation of cell shapes mostly relies on the manual classification of 2D images, causing a subjective and time consuming evaluation based on a portion of the cell surface. We present a dual-stage neural network architecture for analyzing fine shape details from confocal microscopy recording...
Autores principales: | Simionato, Greta, Hinkelmann, Konrad, Chachanidze, Revaz, Bianchi, Paola, Fermo, Elisa, van Wijk, Richard, Leonetti, Marc, Wagner, Christian, Kaestner, Lars, Quint, Stephan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118337/ https://www.ncbi.nlm.nih.gov/pubmed/33983926 http://dx.doi.org/10.1371/journal.pcbi.1008934 |
Ejemplares similares
-
Glutaraldehyde – A Subtle Tool in the Investigation of Healthy and Pathologic Red Blood Cells
por: Abay, Asena, et al.
Publicado: (2019) -
Rare Anemias: Are Their Names Just Smoke and Mirrors?
por: Simionato, Greta, et al.
Publicado: (2021) -
Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control
por: Lopes, Marcelle G.M., et al.
Publicado: (2023) -
Cross-talk between red blood cells and plasma influences blood flow and omics phenotypes in severe COVID-19
por: Recktenwald, Steffen M, et al.
Publicado: (2022) -
The Evolution of Erythrocytes Becoming Red in Respect to Fluorescence
por: Hertz, Laura, et al.
Publicado: (2019)