Cargando…

Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury

INTRODUCTION: The clinical course of coronavirus 2019 (COVID-19) is heterogeneous, ranging from mild to severe multiorgan failure and death. In this study, we analyzed cell-free DNA (cfDNA) as a biomarker of injury to define the sources of tissue injury that contribute to such different trajectories...

Descripción completa

Detalles Bibliográficos
Autores principales: Andargie, Temesgen E., Tsuji, Naoko, Seifuddin, Fayaz, Jang, Moon Kyoo, Yuen, Peter S.T., Kong, Hyesik, Tunc, Ilker, Singh, Komudi, Charya, Ananth, Wilkins, Kenneth, Nathan, Steven, Cox, Andrea, Pirooznia, Mehdi, Star, Robert A., Agbor-Enoh, Sean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119224/
https://www.ncbi.nlm.nih.gov/pubmed/33651717
http://dx.doi.org/10.1172/jci.insight.147610
Descripción
Sumario:INTRODUCTION: The clinical course of coronavirus 2019 (COVID-19) is heterogeneous, ranging from mild to severe multiorgan failure and death. In this study, we analyzed cell-free DNA (cfDNA) as a biomarker of injury to define the sources of tissue injury that contribute to such different trajectories. METHODS: We conducted a multicenter prospective cohort study to enroll patients with COVID-19 and collect plasma samples. Plasma cfDNA was subject to bisulfite sequencing. A library of tissue-specific DNA methylation signatures was used to analyze sequence reads to quantitate cfDNA from different tissue types. We then determined the correlation of tissue-specific cfDNA measures to COVID-19 outcomes. Similar analyses were performed for healthy controls and a comparator group of patients with respiratory syncytial virus and influenza. RESULTS: We found markedly elevated levels and divergent tissue sources of cfDNA in COVID-19 patients compared with patients who had influenza and/or respiratory syncytial virus and with healthy controls. The major sources of cfDNA in COVID-19 were hematopoietic cells, vascular endothelium, hepatocytes, adipocytes, kidney, heart, and lung. cfDNA levels positively correlated with COVID-19 disease severity, C-reactive protein, and D-dimer. cfDNA profile at admission identified patients who subsequently required intensive care or died during hospitalization. Furthermore, the increased cfDNA in COVID-19 patients generated excessive mitochondrial ROS (mtROS) in renal tubular cells in a concentration-dependent manner. This mtROS production was inhibited by a TLR9-specific antagonist. CONCLUSION: cfDNA maps tissue injury that predicts COVID-19 outcomes and may mechanistically propagate COVID-19–induced tissue injury. FUNDING: Intramural Targeted Anti–COVID-19 grant, NIH.