Cargando…
A generative adversarial network-based abnormality detection using only normal images for model training with application to digital breast tomosynthesis
Deep learning has shown tremendous potential in the task of object detection in images. However, a common challenge with this task is when only a limited number of images containing the object of interest are available. This is a particular issue in cancer screening, such as digital breast tomosynth...
Autores principales: | Swiecicki, Albert, Konz, Nicholas, Buda, Mateusz, Mazurowski, Maciej A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119417/ https://www.ncbi.nlm.nih.gov/pubmed/33986361 http://dx.doi.org/10.1038/s41598-021-89626-1 |
Ejemplares similares
-
A Data Set and Deep Learning Algorithm for the Detection of Masses and Architectural Distortions in Digital Breast Tomosynthesis Images
por: Buda, Mateusz, et al.
Publicado: (2021) -
A Competition, Benchmark, Code, and Data for Using Artificial Intelligence to Detect Lesions in Digital Breast Tomosynthesis
por: Konz, Nicholas, et al.
Publicado: (2023) -
Evaluation of a Generative Adversarial Network to Improve Image Quality and Reduce Radiation-Dose during Digital Breast Tomosynthesis
por: Gomi, Tsutomu, et al.
Publicado: (2022) -
Usefulness of a Metal Artifact Reduction Algorithm in Digital Tomosynthesis Using a Combination of Hybrid Generative Adversarial Networks
por: Gomi, Tsutomu, et al.
Publicado: (2021) -
Breast density analysis of digital breast tomosynthesis
por: Heine, John, et al.
Publicado: (2023)