Cargando…
Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data
Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI....
Autores principales: | Rutkowski, David R., Roldán-Alzate, Alejandro, Johnson, Kevin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119419/ https://www.ncbi.nlm.nih.gov/pubmed/33986368 http://dx.doi.org/10.1038/s41598-021-89636-z |
Ejemplares similares
-
A pilot study of bladder voiding with real-time MRI and computational fluid dynamics
por: Pewowaruk, Ryan, et al.
Publicado: (2020) -
The influence of contralateral circulation on computational fluid dynamics of intracranial arteries: simulated versus measured flow velocities
por: Oh, SuJeong, et al.
Publicado: (2023) -
Hemodynamic study of TCPC using in vivo and in vitro 4D flow MRI and numerical simulation
por: Roldán-Alzate, Alejandro, et al.
Publicado: (2014) -
Right ventricular kinetic energy: 4D flow MRI analysis of healthy volunteers and repaired Tetralogy of Fallot
por: Jeong, Daniel, et al.
Publicado: (2014) -
Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI
por: Rispoli, Vinicius C., et al.
Publicado: (2015)