Cargando…
BABEL: using deep learning to translate between single-cell datasets
Recent advances in sequencing and barcoding technologies have enabled researchers to simultaneously profile gene expression, chromatin accessibility, and/or protein levels in single cells. However, these multiomic techniques often pose technical and financial barriers that limit their practicality....
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119457/ https://www.ncbi.nlm.nih.gov/pubmed/33986447 http://dx.doi.org/10.1038/s42003-021-02135-9 |
Sumario: | Recent advances in sequencing and barcoding technologies have enabled researchers to simultaneously profile gene expression, chromatin accessibility, and/or protein levels in single cells. However, these multiomic techniques often pose technical and financial barriers that limit their practicality. Kevin Wu and colleagues recently developed BABEL, a deep learning algorithm that can effectively translate between transcriptomic and chromatin profiles in single cells, thereby enabling researchers to perform multiomic analyses from an individual dataset. |
---|