Cargando…
Prediction of functional outcomes of schizophrenia with genetic biomarkers using a bagging ensemble machine learning method with feature selection
Genetic variants such as single nucleotide polymorphisms (SNPs) have been suggested as potential molecular biomarkers to predict the functional outcome of psychiatric disorders. To assess the schizophrenia’ functional outcomes such as Quality of Life Scale (QLS) and the Global Assessment of Function...
Autores principales: | Lin, Eugene, Lin, Chieh-Hsin, Lane, Hsien-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119477/ https://www.ncbi.nlm.nih.gov/pubmed/33986383 http://dx.doi.org/10.1038/s41598-021-89540-6 |
Ejemplares similares
-
Applying a bagging ensemble machine learning approach to predict functional outcome of schizophrenia with clinical symptoms and cognitive functions
por: Lin, Eugene, et al.
Publicado: (2021) -
Combination of G72 Genetic Variation and G72 Protein Level to Detect Schizophrenia: Machine Learning Approaches
por: Lin, Eugene, et al.
Publicado: (2018) -
An Ensemble Approach to Predict Schizophrenia Using Protein Data in the N-methyl-D-Aspartate Receptor (NMDAR) and Tryptophan Catabolic Pathways
por: Lin, Eugene, et al.
Publicado: (2020) -
Machine Learning and Deep Learning for the Pharmacogenomics of Antidepressant Treatments
por: Lin, Eugene, et al.
Publicado: (2021) -
Machine Learning and Novel Biomarkers for the Diagnosis of Alzheimer’s Disease
por: Chang, Chun-Hung, et al.
Publicado: (2021)