Cargando…
Learning deep features for dead and living breast cancer cell classification without staining
Automated cell classification in cancer biology is a challenging topic in computer vision and machine learning research. Breast cancer is the most common malignancy in women that usually involves phenotypically diverse populations of breast cancer cells and an heterogeneous stroma. In recent years,...
Autores principales: | Pattarone, Gisela, Acion, Laura, Simian, Marina, Mertelsmann, Roland, Follo, Marie, Iarussi, Emmanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119670/ https://www.ncbi.nlm.nih.gov/pubmed/33986434 http://dx.doi.org/10.1038/s41598-021-89895-w |
Ejemplares similares
-
Author Correction: Learning deep features for dead and living breast cancer cell classification without staining
por: Pattarone, Gisela, et al.
Publicado: (2021) -
Metronomic doses and drug schematic combination response tested within chambered coverslips for the treatment of breast cancer cells (JIMT-1)
por: Rosero, Gustavo, et al.
Publicado: (2022) -
Classification of phytoplankton cells as live or dead using the vital stains fluorescein diacetate and 5‐chloromethylfluorescein diacetate
por: MacIntyre, Hugh L., et al.
Publicado: (2016) -
Ability of Vital and Fluorescent Staining in the Differentiation of Schistosoma haematobium Live and Dead Eggs
por: Forson, Peter O., et al.
Publicado: (2019) -
Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms - which stain is suitable?
por: Netuschil, Lutz, et al.
Publicado: (2014)