Cargando…
Predicting sex from retinal fundus photographs using automated deep learning
Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. Herein we present the development of a deep learning model by clinicians without coding, which predicts reported sex from retinal fundus photographs. A model was...
Autores principales: | Korot, Edward, Pontikos, Nikolas, Liu, Xiaoxuan, Wagner, Siegfried K., Faes, Livia, Huemer, Josef, Balaskas, Konstantinos, Denniston, Alastair K., Khawaja, Anthony, Keane, Pearse A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119673/ https://www.ncbi.nlm.nih.gov/pubmed/33986429 http://dx.doi.org/10.1038/s41598-021-89743-x |
Ejemplares similares
-
Insights into Systemic Disease through Retinal Imaging-Based Oculomics
por: Wagner, Siegfried K., et al.
Publicado: (2020) -
Will AI Replace Ophthalmologists?
por: Korot, Edward, et al.
Publicado: (2020) -
Re-evaluating diabetic papillopathy using optical coherence tomography and inner retinal sublayer analysis
por: Huemer, Josef, et al.
Publicado: (2021) -
A Clinician's Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies
por: Faes, Livia, et al.
Publicado: (2020) -
ReLayer: a Free, Online Tool for Extracting Retinal Thickness From Cross-Platform OCT Images
por: Ometto, Giovanni, et al.
Publicado: (2019)