Cargando…
Prognostic prediction of hypertensive intracerebral hemorrhage using CT radiomics and machine learning
OBJECTIVES: Spontaneous intracerebral hemorrhage remains a major cause of death and disability throughout the world. We tried to establish accurate long‐term outcome prediction models for hypertensive intracerebral hemorrhage (HICH) using CT radiomics and machine learning. METHODS: In a retrospectiv...
Autores principales: | Xu, Xinghua, Zhang, Jiashu, Yang, Kai, Wang, Qun, Chen, Xiaolei, Xu, Bainan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119849/ https://www.ncbi.nlm.nih.gov/pubmed/33624945 http://dx.doi.org/10.1002/brb3.2085 |
Ejemplares similares
-
Accuracy of spot sign in predicting hematoma expansion and clinical outcome: A meta-analysis
por: Xu, Xinghua, et al.
Publicado: (2018) -
A Nomogram Based on CT Radiomics and Clinical Risk Factors for Prediction of Prognosis of Hypertensive Intracerebral Hemorrhage
por: Fang, Caiyun, et al.
Publicado: (2022) -
Prediction of Hematoma Expansion in Hypertensive Intracerebral Hemorrhage by a Radiomics Nomogram
por: Dai, Jialin, et al.
Publicado: (2023) -
Neoplastic and Non-neoplastic Acute Intracerebral Hemorrhage in CT Brain Scans: Machine Learning-Based Prediction Using Radiomic Image Features
por: Nawabi, Jawed, et al.
Publicado: (2020) -
Corrigendum: Neoplastic and Non-neoplastic Acute Intracerebral Hemorrhage in CT Brain Scans: Machine Learning-Based Prediction Using Radiomic Image Features
por: Nawabi, Jawed, et al.
Publicado: (2021)