Cargando…
A hierarchical 3D-motion learning framework for animal spontaneous behavior mapping
Animal behavior usually has a hierarchical structure and dynamics. Therefore, to understand how the neural system coordinates with behaviors, neuroscientists need a quantitative description of the hierarchical dynamics of different behaviors. However, the recent end-to-end machine-learning-based met...
Autores principales: | Huang, Kang, Han, Yaning, Chen, Ke, Pan, Hongli, Zhao, Gaoyang, Yi, Wenling, Li, Xiaoxi, Liu, Siyuan, Wei, Pengfei, Wang, Liping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119960/ https://www.ncbi.nlm.nih.gov/pubmed/33986265 http://dx.doi.org/10.1038/s41467-021-22970-y |
Ejemplares similares
-
Spontaneous motion in hierarchically assembled active matter
por: Sanchez, Tim, et al.
Publicado: (2012) -
Systematic evaluation of a predator stress model of depression in mice using a hierarchical 3D-motion learning framework
por: Tseng, Yu-Ting, et al.
Publicado: (2023) -
A Hierarchical Framework Combining Motion and Feature Information for Infrared-Visible Video Registration
por: Sun, Xinglong, et al.
Publicado: (2017) -
Hierarchical motion perception as causal inference
por: Shivkumar, Sabyasachi, et al.
Publicado: (2023) -
Respiratory motion navigated Look-Locker imaging for small animal myocardial T1mapping
por: Kim, Pan-ki, et al.
Publicado: (2015)