Cargando…
Detection of COVID-19 in X-ray images by classification of bag of visual words using neural networks
Coronavirus disease 2019 (COVID-19) was classified as a pandemic by the World Health Organization in March 2020. Given that this novel virus most notably affects the human respiratory system, early detection may help prevent severe lung damage, save lives, and help prevent further disease spread. Gi...
Autores principales: | Nabizadeh-Shahre-Babak, Zahra, Karimi, Nader, Khadivi, Pejman, Roshandel, Roshanak, Emami, Ali, Samavi, Shadrokh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120450/ https://www.ncbi.nlm.nih.gov/pubmed/34007303 http://dx.doi.org/10.1016/j.bspc.2021.102750 |
Ejemplares similares
-
Pooling region learning of visual word for image classification using bag-of-visual-words model
por: Xu, Ye, et al.
Publicado: (2020) -
Advancing Bag-of-Visual-Words Representations for Lesion Classification in Retinal Images
por: Pires, Ramon, et al.
Publicado: (2014) -
Bag of Visual Words Model with Deep Spatial Features for Geographical Scene Classification
por: Feng, Jiangfan, et al.
Publicado: (2017) -
New bag of deep visual words based features to classify chest x-ray images for COVID-19 diagnosis
por: Sitaula, Chiranjibi, et al.
Publicado: (2021) -
Fusion of multi-scale bag of deep visual words features of chest X-ray images to detect COVID-19 infection
por: Sitaula, Chiranjibi, et al.
Publicado: (2021)