Cargando…

Identification of new OPA1 cleavage site reveals that short isoforms regulate mitochondrial fusion

OPA1, a large GTPase of the dynamin superfamily, mediates fusion of the mitochondrial inner membranes, regulates cristae morphology, and maintains respiratory chain function. Inner membrane–anchored long forms of OPA1 (l-OPA1) are proteolytically processed by the OMA1 or YME1L proteases, acting at c...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ruohan, Mishra, Prashant, Garbis, Spiros D., Moradian, Annie, Sweredoski, Michael J., Chan, David C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120690/
https://www.ncbi.nlm.nih.gov/pubmed/33237841
http://dx.doi.org/10.1091/mbc.E20-09-0605
Descripción
Sumario:OPA1, a large GTPase of the dynamin superfamily, mediates fusion of the mitochondrial inner membranes, regulates cristae morphology, and maintains respiratory chain function. Inner membrane–anchored long forms of OPA1 (l-OPA1) are proteolytically processed by the OMA1 or YME1L proteases, acting at cleavage sites S1 and S2, respectively, to produce short forms (s-OPA1). In both mice and humans, half of the mRNA splice forms of Opa1 are constitutively processed to yield exclusively s-OPA1. However, the function of s-OPA1 in mitochondrial fusion has been debated, because in some stress conditions, s-OPA1 is dispensable for fusion. By constructing cells in which the Opa1 locus no longer produces transcripts with S2 cleavage sites, we generated a simplified system to identify the new YME1L-dependent site S3 that mediates constitutive and complete cleavage of OPA1. We show that mitochondrial morphology is highly sensitive to the ratio of l-OPA1 to s-OPA1, indicating that s-OPA1 regulates mitochondrial fusion.