Cargando…
SSBER: removing batch effect for single-cell RNA sequencing data
BACKGROUND: With the continuous maturity of sequencing technology, different laboratories or different sequencing platforms have generated a large amount of single-cell transcriptome sequencing data for the same or different tissues. Due to batch effects and high dimensions of scRNA data, downstream...
Autores principales: | Zhang, Yin, Wang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120905/ https://www.ncbi.nlm.nih.gov/pubmed/33990189 http://dx.doi.org/10.1186/s12859-021-04165-w |
Ejemplares similares
-
SCIBER: a simple method for removing batch effects from single-cell RNA-sequencing data
por: Gan, Dailin, et al.
Publicado: (2022) -
Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat
por: Stein, Caleb K, et al.
Publicado: (2015) -
A novel approach to remove the batch effect of single-cell data
por: Zhang, Feng, et al.
Publicado: (2019) -
Comparison of Scanpy-based algorithms to remove the batch effect from single-cell RNA-seq data
por: Li, Jiaqi, et al.
Publicado: (2020) -
I-Impute: a self-consistent method to impute single cell RNA sequencing data
por: Feng, Xikang, et al.
Publicado: (2020)