Cargando…

Early lactate and glucose kinetics following return to spontaneous circulation after out-of-hospital cardiac arrest

OBJECTIVE: Lactate has been shown to be preferentially metabolized in comparison to glucose after physiological stress, such as strenuous exercise. Derangements of lactate and glucose are common after out-of-hospital cardiac arrest (OHCA). Therefore, we hypothesized that lactate decreases faster tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Freire Jorge, Pedro, Boer, Rohan, Posma, Rene A., Harms, Katharina C., Hiemstra, Bart, Bens, Bas W. J., Nijsten, Maarten W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120923/
https://www.ncbi.nlm.nih.gov/pubmed/33985570
http://dx.doi.org/10.1186/s13104-021-05604-w
Descripción
Sumario:OBJECTIVE: Lactate has been shown to be preferentially metabolized in comparison to glucose after physiological stress, such as strenuous exercise. Derangements of lactate and glucose are common after out-of-hospital cardiac arrest (OHCA). Therefore, we hypothesized that lactate decreases faster than glucose after return-to-spontaneous-circulation (ROSC) after OHCA. RESULTS: We included 155 OHCA patients in our analysis. Within the first 8 h of presentation to the emergency department, 843 lactates and 1019 glucoses were available, respectively. Lactate decreased to 50% of its initial value within 1.5 h (95% CI [0.2–3.6 h]), while glucose halved within 5.6 h (95% CI [5.4–5.7 h]). Also, in the first 8 h after presentation lactate decreases more than glucose in relation to their initial values (lactate 72.6% vs glucose 52.1%). In patients with marked hyperlactatemia after OHCA, lactate decreased expediently while glucose recovered more slowly, whereas arterial pH recovered at a similar rapid rate as lactate. Hospital non-survivors (N = 82) had a slower recovery of lactate (P = 0.002) than survivors (N = 82). The preferential clearance of lactate underscores its role as a prime energy substrate, when available, during recovery from extreme stress. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13104-021-05604-w.