Cargando…

Improved estimators for the rate parameter of gamma model using asymptotic properties

In this paper we proposed three estimators namely linear shrinkage, preliminary test and shrinkage preliminary test for the rate parameter of univariate gamma. The salient feature of the proposed estimators is the admissibility property that is defined on belief of the uncertain prior information. E...

Descripción completa

Detalles Bibliográficos
Autores principales: Frempong, Nana Kena, Avuglah, Richard Kodzo, Dontwi, Isaac Kwame, Bukari, Francis Kwame
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120952/
https://www.ncbi.nlm.nih.gov/pubmed/34027159
http://dx.doi.org/10.1016/j.heliyon.2021.e06941
_version_ 1783692220508930048
author Frempong, Nana Kena
Avuglah, Richard Kodzo
Dontwi, Isaac Kwame
Bukari, Francis Kwame
author_facet Frempong, Nana Kena
Avuglah, Richard Kodzo
Dontwi, Isaac Kwame
Bukari, Francis Kwame
author_sort Frempong, Nana Kena
collection PubMed
description In this paper we proposed three estimators namely linear shrinkage, preliminary test and shrinkage preliminary test for the rate parameter of univariate gamma. The salient feature of the proposed estimators is the admissibility property that is defined on belief of the uncertain prior information. Expressions for bias and relative efficiency under method of moment have been derived using asymptotic theory. A Monte Carlo simulation study shows that the proposed estimators are more efficient and minimally biased when prior information is close to the neighbourhood of the rate parameter.
format Online
Article
Text
id pubmed-8120952
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-81209522021-05-20 Improved estimators for the rate parameter of gamma model using asymptotic properties Frempong, Nana Kena Avuglah, Richard Kodzo Dontwi, Isaac Kwame Bukari, Francis Kwame Heliyon Research Article In this paper we proposed three estimators namely linear shrinkage, preliminary test and shrinkage preliminary test for the rate parameter of univariate gamma. The salient feature of the proposed estimators is the admissibility property that is defined on belief of the uncertain prior information. Expressions for bias and relative efficiency under method of moment have been derived using asymptotic theory. A Monte Carlo simulation study shows that the proposed estimators are more efficient and minimally biased when prior information is close to the neighbourhood of the rate parameter. Elsevier 2021-05-06 /pmc/articles/PMC8120952/ /pubmed/34027159 http://dx.doi.org/10.1016/j.heliyon.2021.e06941 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Frempong, Nana Kena
Avuglah, Richard Kodzo
Dontwi, Isaac Kwame
Bukari, Francis Kwame
Improved estimators for the rate parameter of gamma model using asymptotic properties
title Improved estimators for the rate parameter of gamma model using asymptotic properties
title_full Improved estimators for the rate parameter of gamma model using asymptotic properties
title_fullStr Improved estimators for the rate parameter of gamma model using asymptotic properties
title_full_unstemmed Improved estimators for the rate parameter of gamma model using asymptotic properties
title_short Improved estimators for the rate parameter of gamma model using asymptotic properties
title_sort improved estimators for the rate parameter of gamma model using asymptotic properties
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120952/
https://www.ncbi.nlm.nih.gov/pubmed/34027159
http://dx.doi.org/10.1016/j.heliyon.2021.e06941
work_keys_str_mv AT frempongnanakena improvedestimatorsfortherateparameterofgammamodelusingasymptoticproperties
AT avuglahrichardkodzo improvedestimatorsfortherateparameterofgammamodelusingasymptoticproperties
AT dontwiisaackwame improvedestimatorsfortherateparameterofgammamodelusingasymptoticproperties
AT bukarifranciskwame improvedestimatorsfortherateparameterofgammamodelusingasymptoticproperties