Cargando…

Analyses of Countermovement Jump Performance in Time and Frequency Domains

This study aimed to analyze counter-movement jump (CMJ) performance in time and frequency domains. Fortyfour Division I American football players participated in the study. Kinetic variables were collected from both dominant and non-dominant legs using two force plates. Normalized peak power, normal...

Descripción completa

Detalles Bibliográficos
Autores principales: Sha, Zhanxin, Zhou, Zhaoxian, Dai, Boyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sciendo 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120955/
https://www.ncbi.nlm.nih.gov/pubmed/34025862
http://dx.doi.org/10.2478/hukin-2021-0028
Descripción
Sumario:This study aimed to analyze counter-movement jump (CMJ) performance in time and frequency domains. Fortyfour Division I American football players participated in the study. Kinetic variables were collected from both dominant and non-dominant legs using two force plates. Normalized peak power, normalized net impulse, and normalized peak force significantly correlated with jump height (r = .960, r = .998, r = .725, respectively with p < .05). The mean frequency component was significantly correlated with CMJ performance (r = .355 with p < .05). The reliability of the frequency variables was higher than the time domain variables. Frequency domain variables showed weaker correlations with jump height compared with time domain variables. Frequency domain analysis provides frequency components, which represent the rate of energy transmission from the eccentric phase to the end of the push-off phase. Frequency component information may provide additional information for the analyses of CMJ performance for athletes.