Cargando…
A Neural Network Approach to Identify Glioblastoma Progression Phenotype from Multimodal MRI
SIMPLE SUMMARY: Glioblastoma is the most common malignant primary brain tumor and has a poor prognosis with inevitable recurrence or progression. The phenotypes of its progression patterns can be diverse, which may potentially affect the treatment plan and clinical outcome. Our study aimed to identi...
Autores principales: | Yan, Jiun-Lin, Toh, Cheng-Hong, Ko, Li, Wei, Kuo-Chen, Chen, Pin-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121245/ https://www.ncbi.nlm.nih.gov/pubmed/33919447 http://dx.doi.org/10.3390/cancers13092006 |
Ejemplares similares
-
Multimodal MRI characteristics of the glioblastoma infiltration beyond contrast enhancement
por: Yan, Jiun-Lin, et al.
Publicado: (2019) -
A Neural Network Approach to Identify the Peritumoral Invasive Areas in Glioblastoma Patients by Using MR Radiomics
por: Yan, Jiun-Lin, et al.
Publicado: (2020) -
Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas
por: Price, Stephen J., et al.
Publicado: (2015) -
Publisher Correction: A Neural Network Approach to Identify the Peritumoral Invasive Areas in Glioblastoma Patients by Using MR Radiomics
por: Yan, Jiun-Lin, et al.
Publicado: (2020) -
Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images
por: Das, Anisha, et al.
Publicado: (2023)