Cargando…
Large-Scale and Multiscale Networks in the Rodent Brain during Novelty Exploration
Neural activity is coordinated across multiple spatial and temporal scales, and these patterns of coordination are implicated in both healthy and impaired cognitive operations. However, empirical cross-scale investigations are relatively infrequent, because of limited data availability and to the di...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121262/ https://www.ncbi.nlm.nih.gov/pubmed/33757983 http://dx.doi.org/10.1523/ENEURO.0494-20.2021 |
Sumario: | Neural activity is coordinated across multiple spatial and temporal scales, and these patterns of coordination are implicated in both healthy and impaired cognitive operations. However, empirical cross-scale investigations are relatively infrequent, because of limited data availability and to the difficulty of analyzing rich multivariate datasets. Here, we applied frequency-resolved multivariate source-separation analyses to characterize a large-scale dataset comprising spiking and local field potential (LFP) activity recorded simultaneously in three brain regions (prefrontal cortex, parietal cortex, hippocampus) in freely-moving mice. We identified a constellation of multidimensional, inter-regional networks across a range of frequencies (2–200 Hz). These networks were reproducible within animals across different recording sessions, but varied across different animals, suggesting individual variability in network architecture. The theta band (∼4–10 Hz) networks had several prominent features, including roughly equal contribution from all regions and strong inter-network synchronization. Overall, these findings demonstrate a multidimensional landscape of large-scale functional activations of cortical networks operating across multiple spatial, spectral, and temporal scales during open-field exploration. |
---|