Cargando…
PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data
The inference of gene regulatory networks (GRNs) from expression data is a challenging problem in systems biology. The stochasticity or fluctuations in the biochemical processes that regulate the transcription process poses as one of the major challenges. In this paper, we propose a novel GRN infere...
Autores principales: | Vatsa, Deepika, Agarwal, Sumeet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121333/ https://www.ncbi.nlm.nih.gov/pubmed/33989333 http://dx.doi.org/10.1371/journal.pone.0251666 |
Ejemplares similares
-
Gene regulatory network inference from sparsely sampled noisy data
por: Aalto, Atte, et al.
Publicado: (2020) -
D3GRN: a data driven dynamic network construction method to infer gene regulatory networks
por: Chen, Xiang, et al.
Publicado: (2019) -
Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks
por: Durzinsky, Markus, et al.
Publicado: (2011) -
Coloured Petri nets
por: Jensen, Kurt
Publicado: (1992) -
Coloured Petri nets
por: Jensen, Kurt, et al.
Publicado: (1995)