Cargando…
Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed
Age-related macular degeneration (AMD) is an eye disease that can cause visual impairment and affects the elderly over 50 years of age. AMD is characterized by the presence of drusen, which causes changes in the physiological structure of the retinal pigment epithelium (RPE) and the boundaries of th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121340/ https://www.ncbi.nlm.nih.gov/pubmed/33989316 http://dx.doi.org/10.1371/journal.pone.0251591 |
_version_ | 1783692321714339840 |
---|---|
author | Sousa, Jefferson Alves Paiva, Anselmo Silva, Aristófanes Almeida, João Dallyson Braz Junior, Geraldo Diniz, João Otávio Figueredo, Weslley Kelson Gattass, Marcelo |
author_facet | Sousa, Jefferson Alves Paiva, Anselmo Silva, Aristófanes Almeida, João Dallyson Braz Junior, Geraldo Diniz, João Otávio Figueredo, Weslley Kelson Gattass, Marcelo |
author_sort | Sousa, Jefferson Alves |
collection | PubMed |
description | Age-related macular degeneration (AMD) is an eye disease that can cause visual impairment and affects the elderly over 50 years of age. AMD is characterized by the presence of drusen, which causes changes in the physiological structure of the retinal pigment epithelium (RPE) and the boundaries of the Bruch’s membrane layer (BM). Optical coherence tomography is one of the main exams for the detection and monitoring of AMD, which seeks changes through the evaluation of successive sectional cuts in the search for morphological changes caused by drusen. The use of CAD (Computer-Aided Detection) systems has contributed to increasing the chances of correct detection, assisting specialists in diagnosing and monitoring disease. Thus, the objective of this work is to present a method for the segmentation of the inner limiting membrane (ILM), retinal pigment epithelium, and Bruch’s membrane in OCT images of healthy and Intermediate AMD patients. The method uses two deep neural networks, U-Net and DexiNed to perform the segmentation. The results were promising, reaching an average absolute error of 0.49 pixel for ILM, 0.57 for RPE, and 0.66 for BM. |
format | Online Article Text |
id | pubmed-8121340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-81213402021-05-24 Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed Sousa, Jefferson Alves Paiva, Anselmo Silva, Aristófanes Almeida, João Dallyson Braz Junior, Geraldo Diniz, João Otávio Figueredo, Weslley Kelson Gattass, Marcelo PLoS One Research Article Age-related macular degeneration (AMD) is an eye disease that can cause visual impairment and affects the elderly over 50 years of age. AMD is characterized by the presence of drusen, which causes changes in the physiological structure of the retinal pigment epithelium (RPE) and the boundaries of the Bruch’s membrane layer (BM). Optical coherence tomography is one of the main exams for the detection and monitoring of AMD, which seeks changes through the evaluation of successive sectional cuts in the search for morphological changes caused by drusen. The use of CAD (Computer-Aided Detection) systems has contributed to increasing the chances of correct detection, assisting specialists in diagnosing and monitoring disease. Thus, the objective of this work is to present a method for the segmentation of the inner limiting membrane (ILM), retinal pigment epithelium, and Bruch’s membrane in OCT images of healthy and Intermediate AMD patients. The method uses two deep neural networks, U-Net and DexiNed to perform the segmentation. The results were promising, reaching an average absolute error of 0.49 pixel for ILM, 0.57 for RPE, and 0.66 for BM. Public Library of Science 2021-05-14 /pmc/articles/PMC8121340/ /pubmed/33989316 http://dx.doi.org/10.1371/journal.pone.0251591 Text en © 2021 Sousa et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Sousa, Jefferson Alves Paiva, Anselmo Silva, Aristófanes Almeida, João Dallyson Braz Junior, Geraldo Diniz, João Otávio Figueredo, Weslley Kelson Gattass, Marcelo Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed |
title | Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed |
title_full | Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed |
title_fullStr | Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed |
title_full_unstemmed | Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed |
title_short | Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed |
title_sort | automatic segmentation of retinal layers in oct images with intermediate age-related macular degeneration using u-net and dexined |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121340/ https://www.ncbi.nlm.nih.gov/pubmed/33989316 http://dx.doi.org/10.1371/journal.pone.0251591 |
work_keys_str_mv | AT sousajeffersonalves automaticsegmentationofretinallayersinoctimageswithintermediateagerelatedmaculardegenerationusingunetanddexined AT paivaanselmo automaticsegmentationofretinallayersinoctimageswithintermediateagerelatedmaculardegenerationusingunetanddexined AT silvaaristofanes automaticsegmentationofretinallayersinoctimageswithintermediateagerelatedmaculardegenerationusingunetanddexined AT almeidajoaodallyson automaticsegmentationofretinallayersinoctimageswithintermediateagerelatedmaculardegenerationusingunetanddexined AT brazjuniorgeraldo automaticsegmentationofretinallayersinoctimageswithintermediateagerelatedmaculardegenerationusingunetanddexined AT dinizjoaootavio automaticsegmentationofretinallayersinoctimageswithintermediateagerelatedmaculardegenerationusingunetanddexined AT figueredoweslleykelson automaticsegmentationofretinallayersinoctimageswithintermediateagerelatedmaculardegenerationusingunetanddexined AT gattassmarcelo automaticsegmentationofretinallayersinoctimageswithintermediateagerelatedmaculardegenerationusingunetanddexined |