Cargando…

A slip law for hard-bedded glaciers derived from observed bed topography

Ice-sheet responses to climate warming and associated sea-level rise depend sensitively on the form of the slip law that relates drag at the beds of glaciers to their slip velocity and basal water pressure. Process-based models of glacier slip over idealized, hard (rigid) beds with water-filled cavi...

Descripción completa

Detalles Bibliográficos
Autores principales: Helanow, Christian, Iverson, Neal R., Woodard, Jacob B., Zoet, Lucas K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121427/
https://www.ncbi.nlm.nih.gov/pubmed/33990323
http://dx.doi.org/10.1126/sciadv.abe7798
Descripción
Sumario:Ice-sheet responses to climate warming and associated sea-level rise depend sensitively on the form of the slip law that relates drag at the beds of glaciers to their slip velocity and basal water pressure. Process-based models of glacier slip over idealized, hard (rigid) beds with water-filled cavities yield slip laws in which drag decreases with increasing slip velocity or water pressure (rate-weakening drag). We present results of a process-based, three-dimensional model of glacier slip applied to measured bed topographies. We find that consideration of actual glacier beds eliminates or makes insignificant rate-weakening drag, thereby uniting process-based models of slip with some ice-sheet model parameterizations. Computed slip laws have the same form as those indicated by experiments with ice dragged over deformable till, the other common bed condition. Thus, these results may point to a universal slip law that would simplify and improve estimations of glacier discharges to the oceans.