Cargando…
Triblock Copolymer Nanomicelles Loaded with Curcumin Attenuates Inflammation via Inhibiting the NF-κB Pathway in the Rat Model of Cerebral Ischemia
AIM: Cerebral ischemic injury is one of the debilitating diseases showing that inflammation plays an important role in worsening ischemic damage. Therefore, studying the effects of some potential anti-inflammatory compounds can be very important in the treatment of cerebral ischemic injury. METHODS:...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121676/ https://www.ncbi.nlm.nih.gov/pubmed/34007172 http://dx.doi.org/10.2147/IJN.S300379 |
_version_ | 1783692414404263936 |
---|---|
author | Li, Fengguang Xu, Yan Li, Xing Wang, Xinghua Yang, Zhigang Li, Wanli Cheng, Wei Yan, Gangli |
author_facet | Li, Fengguang Xu, Yan Li, Xing Wang, Xinghua Yang, Zhigang Li, Wanli Cheng, Wei Yan, Gangli |
author_sort | Li, Fengguang |
collection | PubMed |
description | AIM: Cerebral ischemic injury is one of the debilitating diseases showing that inflammation plays an important role in worsening ischemic damage. Therefore, studying the effects of some potential anti-inflammatory compounds can be very important in the treatment of cerebral ischemic injury. METHODS: This study investigated anti-inflammatory effects of triblock copolymer nanomicelles loaded with curcumin (abbreviated as NC) in the brain of rats following transient cerebral ischemia/reperfusion (I/R) injury in stroke. After preparation of NC, their protective effects against bilateral common carotid artery occlusion (BCCAO) were explored by different techniques. Concentrations of free curcumin (C) and NC in liver, kidney, brain, and heart organs, as well as in plasma, were measured using a spectrofluorometer. Western blot analysis was then used to measure NF-κB-p65 protein expression levels. Also, ELISA assay was used to examine the level of cytokines IL-1β, IL-6, and TNF-α. Lipid peroxidation levels were assessed using MDA assay and H&E staining was used for histopathological examination of the hippocampus tissue sections. RESULTS: The results showed a higher level of NC compared to C in plasma and organs including the brain, heart, and kidneys. Significant upregulation of NF-κB, IL-1β, IL-6, and TNF-α expressions compared to control was observed in rats after induction of I/R, which leads to an increase in inflammation. However, NC was able to downregulate significantly the level of these inflammatory cytokines compared to C. Also, the level of lipid peroxidation in pre-treated rats with 80mg/kg NC was significantly reduced. CONCLUSION: Our findings in the current study demonstrate a therapeutic effect of NC in an animal model of cerebral ischemia/reperfusion (I/R) injury in stroke through the downregulation of NF-κB-p65 protein and inflammatory cytokines. |
format | Online Article Text |
id | pubmed-8121676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-81216762021-05-17 Triblock Copolymer Nanomicelles Loaded with Curcumin Attenuates Inflammation via Inhibiting the NF-κB Pathway in the Rat Model of Cerebral Ischemia Li, Fengguang Xu, Yan Li, Xing Wang, Xinghua Yang, Zhigang Li, Wanli Cheng, Wei Yan, Gangli Int J Nanomedicine Original Research AIM: Cerebral ischemic injury is one of the debilitating diseases showing that inflammation plays an important role in worsening ischemic damage. Therefore, studying the effects of some potential anti-inflammatory compounds can be very important in the treatment of cerebral ischemic injury. METHODS: This study investigated anti-inflammatory effects of triblock copolymer nanomicelles loaded with curcumin (abbreviated as NC) in the brain of rats following transient cerebral ischemia/reperfusion (I/R) injury in stroke. After preparation of NC, their protective effects against bilateral common carotid artery occlusion (BCCAO) were explored by different techniques. Concentrations of free curcumin (C) and NC in liver, kidney, brain, and heart organs, as well as in plasma, were measured using a spectrofluorometer. Western blot analysis was then used to measure NF-κB-p65 protein expression levels. Also, ELISA assay was used to examine the level of cytokines IL-1β, IL-6, and TNF-α. Lipid peroxidation levels were assessed using MDA assay and H&E staining was used for histopathological examination of the hippocampus tissue sections. RESULTS: The results showed a higher level of NC compared to C in plasma and organs including the brain, heart, and kidneys. Significant upregulation of NF-κB, IL-1β, IL-6, and TNF-α expressions compared to control was observed in rats after induction of I/R, which leads to an increase in inflammation. However, NC was able to downregulate significantly the level of these inflammatory cytokines compared to C. Also, the level of lipid peroxidation in pre-treated rats with 80mg/kg NC was significantly reduced. CONCLUSION: Our findings in the current study demonstrate a therapeutic effect of NC in an animal model of cerebral ischemia/reperfusion (I/R) injury in stroke through the downregulation of NF-κB-p65 protein and inflammatory cytokines. Dove 2021-05-10 /pmc/articles/PMC8121676/ /pubmed/34007172 http://dx.doi.org/10.2147/IJN.S300379 Text en © 2021 Li et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Li, Fengguang Xu, Yan Li, Xing Wang, Xinghua Yang, Zhigang Li, Wanli Cheng, Wei Yan, Gangli Triblock Copolymer Nanomicelles Loaded with Curcumin Attenuates Inflammation via Inhibiting the NF-κB Pathway in the Rat Model of Cerebral Ischemia |
title | Triblock Copolymer Nanomicelles Loaded with Curcumin Attenuates Inflammation via Inhibiting the NF-κB Pathway in the Rat Model of Cerebral Ischemia |
title_full | Triblock Copolymer Nanomicelles Loaded with Curcumin Attenuates Inflammation via Inhibiting the NF-κB Pathway in the Rat Model of Cerebral Ischemia |
title_fullStr | Triblock Copolymer Nanomicelles Loaded with Curcumin Attenuates Inflammation via Inhibiting the NF-κB Pathway in the Rat Model of Cerebral Ischemia |
title_full_unstemmed | Triblock Copolymer Nanomicelles Loaded with Curcumin Attenuates Inflammation via Inhibiting the NF-κB Pathway in the Rat Model of Cerebral Ischemia |
title_short | Triblock Copolymer Nanomicelles Loaded with Curcumin Attenuates Inflammation via Inhibiting the NF-κB Pathway in the Rat Model of Cerebral Ischemia |
title_sort | triblock copolymer nanomicelles loaded with curcumin attenuates inflammation via inhibiting the nf-κb pathway in the rat model of cerebral ischemia |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121676/ https://www.ncbi.nlm.nih.gov/pubmed/34007172 http://dx.doi.org/10.2147/IJN.S300379 |
work_keys_str_mv | AT lifengguang triblockcopolymernanomicellesloadedwithcurcuminattenuatesinflammationviainhibitingthenfkbpathwayintheratmodelofcerebralischemia AT xuyan triblockcopolymernanomicellesloadedwithcurcuminattenuatesinflammationviainhibitingthenfkbpathwayintheratmodelofcerebralischemia AT lixing triblockcopolymernanomicellesloadedwithcurcuminattenuatesinflammationviainhibitingthenfkbpathwayintheratmodelofcerebralischemia AT wangxinghua triblockcopolymernanomicellesloadedwithcurcuminattenuatesinflammationviainhibitingthenfkbpathwayintheratmodelofcerebralischemia AT yangzhigang triblockcopolymernanomicellesloadedwithcurcuminattenuatesinflammationviainhibitingthenfkbpathwayintheratmodelofcerebralischemia AT liwanli triblockcopolymernanomicellesloadedwithcurcuminattenuatesinflammationviainhibitingthenfkbpathwayintheratmodelofcerebralischemia AT chengwei triblockcopolymernanomicellesloadedwithcurcuminattenuatesinflammationviainhibitingthenfkbpathwayintheratmodelofcerebralischemia AT yangangli triblockcopolymernanomicellesloadedwithcurcuminattenuatesinflammationviainhibitingthenfkbpathwayintheratmodelofcerebralischemia |