Cargando…

Printable homocomposite hydrogels with synergistically reinforced molecular-colloidal networks

The design of hydrogels where multiple interpenetrating networks enable enhanced mechanical properties can broaden their field of application in biomedical materials, 3D printing, and soft robotics. We report a class of self-reinforced homocomposite hydrogels (HHGs) comprised of interpenetrating net...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Austin H., Roh, Sangchul, Jacob, Alan R., Stoyanov, Simeon D., Hsiao, Lilian, Velev, Orlin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121785/
https://www.ncbi.nlm.nih.gov/pubmed/33990593
http://dx.doi.org/10.1038/s41467-021-23098-9
Descripción
Sumario:The design of hydrogels where multiple interpenetrating networks enable enhanced mechanical properties can broaden their field of application in biomedical materials, 3D printing, and soft robotics. We report a class of self-reinforced homocomposite hydrogels (HHGs) comprised of interpenetrating networks of multiscale hierarchy. A molecular alginate gel is reinforced by a colloidal network of hierarchically branched alginate soft dendritic colloids (SDCs). The reinforcement of the molecular gel with the nanofibrillar SDC network of the same biopolymer results in a remarkable increase of the HHG’s mechanical properties. The viscoelastic HHGs show >3× larger storage modulus and >4× larger Young’s modulus than either constitutive network at the same concentration. Such synergistically enforced colloidal-molecular HHGs open up numerous opportunities for formulation of biocompatible gels with robust structure-property relationships. Balance of the ratio of their precursors facilitates precise control of the yield stress and rate of self-reinforcement, enabling efficient extrusion 3D printing of HHGs.