Cargando…
Hierarchical progressive learning of cell identities in single-cell data
Supervised methods are increasingly used to identify cell populations in single-cell data. Yet, current methods are limited in their ability to learn from multiple datasets simultaneously, are hampered by the annotation of datasets at different resolutions, and do not preserve annotations when retra...
Autores principales: | Michielsen, Lieke, Reinders, Marcel J. T., Mahfouz, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121839/ https://www.ncbi.nlm.nih.gov/pubmed/33990598 http://dx.doi.org/10.1038/s41467-021-23196-8 |
Ejemplares similares
-
Cell type matching across species using protein embeddings and transfer learning
por: Biharie, Kirti, et al.
Publicado: (2023) -
A comparison of automatic cell identification methods for single-cell RNA sequencing data
por: Abdelaal, Tamim, et al.
Publicado: (2019) -
Single-cell reference mapping to construct and extend cell-type hierarchies
por: Michielsen, Lieke, et al.
Publicado: (2023) -
Untangling biological factors influencing trajectory inference from single cell data
por: Charrout, Mohammed, et al.
Publicado: (2020) -
Untangling biological factors influencing trajectory inference from single cell data
por: Charrout, Mohammed, et al.
Publicado: (2020)