Cargando…
Fast and accurate automated recognition of the dominant cells from fecal images based on Faster R-CNN
Fecal samples can easily be collected and are representative of a person’s current health state; therefore, the demand for routine fecal examination has increased sharply. However, manual operation may pollute the samples, and low efficiency limits the general examination speed; therefore, automatic...
Autores principales: | Zhang, Jing, Wang, Xiangzhou, Ni, Guangming, Liu, Juanxiu, Hao, Ruqian, Liu, Lin, Liu, Yong, Du, Xiaohui, Xu, Fan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121882/ https://www.ncbi.nlm.nih.gov/pubmed/33990662 http://dx.doi.org/10.1038/s41598-021-89863-4 |
Ejemplares similares
-
Automatic classification of cells in microscopic fecal images using convolutional neural networks
por: Du, Xiaohui, et al.
Publicado: (2019) -
Trichomonas Detection in Leucorrhea Based on VIBE Method
por: Du, Xiaohui, et al.
Publicado: (2019) -
Morphological components detection for super-depth-of-field bio-micrograph based on deep learning
por: Du, Xiaohui, et al.
Publicado: (2021) -
Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics
por: Zhao, Jiaxi, et al.
Publicado: (2023) -
Improved Faster R-CNN for the Detection Method of Industrial Control Logic Graph Recognition
por: Wu, Shilin, et al.
Publicado: (2022)