Cargando…

Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export

The organic carbon produced in the ocean’s surface by phytoplankton is either passed through the food web or exported to the ocean interior as marine snow. The rate and efficiency of such vertical export strongly depend on the size, structure and shape of individual particles, but apart from size, o...

Descripción completa

Detalles Bibliográficos
Autores principales: Trudnowska, Emilia, Lacour, Léo, Ardyna, Mathieu, Rogge, Andreas, Irisson, Jean Olivier, Waite, Anya M., Babin, Marcel, Stemmann, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121919/
https://www.ncbi.nlm.nih.gov/pubmed/33990580
http://dx.doi.org/10.1038/s41467-021-22994-4
Descripción
Sumario:The organic carbon produced in the ocean’s surface by phytoplankton is either passed through the food web or exported to the ocean interior as marine snow. The rate and efficiency of such vertical export strongly depend on the size, structure and shape of individual particles, but apart from size, other morphological properties are still not quantitatively monitored. With the growing number of in situ imaging technologies, there is now a great possibility to analyze the morphology of individual marine snow. Thus, automated methods for their classification are urgently needed. Consequently, here we present a simple, objective categorization method of marine snow into a few ecologically meaningful functional morphotypes using field data from successive phases of the Arctic phytoplankton bloom. The proposed approach is a promising tool for future studies aiming to integrate the diversity, composition and morphology of marine snow into our understanding of the biological carbon pump.