Cargando…
Resource-constrained FPGA/DNN co-design
Deep neural networks (DNNs) have demonstrated super performance in most learning tasks. However, a DNN typically contains a large number of parameters and operations, requiring a high-end processing platform for high-speed execution. To address this challenge, hardware-and-software co-design strateg...
Autores principales: | Zhang, Zhichao, Kouzani, Abbas Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122185/ https://www.ncbi.nlm.nih.gov/pubmed/34025038 http://dx.doi.org/10.1007/s00521-021-06113-4 |
Ejemplares similares
-
Time-Constrained Adversarial Defense in IoT Edge Devices through Kernel Tensor Decomposition and Multi-DNN Scheduling
por: Kim, Myungsun, et al.
Publicado: (2022) -
DNN based reliability evaluation for telemedicine data
por: Shin, Dong Ah, et al.
Publicado: (2022) -
FPGA design
por: Simpson, Philip
Publicado: (2010) -
DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System
por: Mao, Yingchi, et al.
Publicado: (2019) -
Design of Convolutional Neural Network Processor Based on FPGA Resource Multiplexing Architecture
por: Yan, Fei, et al.
Publicado: (2022)