Cargando…
A Two-Stage Data Association Approach for 3D Multi-Object Tracking
Multi-Object Tracking (MOT) is an integral part of any autonomous driving pipelines because it produces trajectories of other moving objects in the scene and predicts their future motion. Thanks to the recent advances in 3D object detection enabled by deep learning, track-by-detection has become the...
Autores principales: | Dao, Minh-Quan, Frémont, Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122257/ https://www.ncbi.nlm.nih.gov/pubmed/33919034 http://dx.doi.org/10.3390/s21092894 |
Ejemplares similares
-
MSA-MOT: Multi-Stage Association for 3D Multimodality Multi-Object Tracking
por: Zhu, Ziming, et al.
Publicado: (2022) -
Data association for multi-object visual tracking
por: Betke, Margrit, et al.
Publicado: (2016) -
SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking
por: Li, Jiaxin, et al.
Publicado: (2022) -
Data Association for Multi-Object Tracking via Deep Neural Networks
por: Yoon, Kwangjin, et al.
Publicado: (2019) -
Pixel-Guided Association for Multi-Object Tracking
por: Boragule, Abhijeet, et al.
Publicado: (2022)