Cargando…

Characterization of Betulinic Acid-Multiwalled Carbon Nanotubes Modified with Hydrophilic Biopolymer for Improved Biocompatibility on NIH/3T3 Cell Line

The biocompatibility of carbon nanotubes (CNT) is fairly a challenging task for their applications in nanomedicine. Therefore, the objective of this research was to formulate four types of highly biocompatible betulinic acid-loaded biopolymer nanocomposites, namely chitosan-multiwalled carbon nanotu...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Julia Meihua, Bullo, Saifullah, Fakurazi, Sharida, Hussein, Mohd Zobir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122267/
https://www.ncbi.nlm.nih.gov/pubmed/33919467
http://dx.doi.org/10.3390/polym13091362
_version_ 1783692553310175232
author Tan, Julia Meihua
Bullo, Saifullah
Fakurazi, Sharida
Hussein, Mohd Zobir
author_facet Tan, Julia Meihua
Bullo, Saifullah
Fakurazi, Sharida
Hussein, Mohd Zobir
author_sort Tan, Julia Meihua
collection PubMed
description The biocompatibility of carbon nanotubes (CNT) is fairly a challenging task for their applications in nanomedicine. Therefore, the objective of this research was to formulate four types of highly biocompatible betulinic acid-loaded biopolymer nanocomposites, namely chitosan-multiwalled carbon nanotubes (MWBA-CS), polyethylene glycol-multiwalled carbon nanotubes (MWBA-PG), Tween 20-multiwalled carbon nanotubes (MWBA-T2) and Tween 80-multiwalled carbon nanotubes (MWBA-T8). The physico-chemical properties of the modified nanocomposites were determined by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and Raman spectroscopy, while the surface morphology of the resulting nanocomposites was studied using field emission scanning electron microscopy (FESEM). All data revealed that the external surface of MWBA nanocomposites was successfully coated with the respective polymer molecules through hydrophobic and electrostatic interactions with improved thermal profiles. The cell viability assay, which was performed on cultured normal embryonic mouse fibroblast cells, confirmed their excellent biocompatibility in phosphate-buffered saline aqueous media. Overall, our findings herein suggest that the synthesized biopolymer-coated MWBA nanocomposites are promising nanomaterials for drug delivery applications as they enhance the solubility and dispersibility of CNT with significantly reduced cytotoxic effect, especially in normal cells.
format Online
Article
Text
id pubmed-8122267
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81222672021-05-16 Characterization of Betulinic Acid-Multiwalled Carbon Nanotubes Modified with Hydrophilic Biopolymer for Improved Biocompatibility on NIH/3T3 Cell Line Tan, Julia Meihua Bullo, Saifullah Fakurazi, Sharida Hussein, Mohd Zobir Polymers (Basel) Article The biocompatibility of carbon nanotubes (CNT) is fairly a challenging task for their applications in nanomedicine. Therefore, the objective of this research was to formulate four types of highly biocompatible betulinic acid-loaded biopolymer nanocomposites, namely chitosan-multiwalled carbon nanotubes (MWBA-CS), polyethylene glycol-multiwalled carbon nanotubes (MWBA-PG), Tween 20-multiwalled carbon nanotubes (MWBA-T2) and Tween 80-multiwalled carbon nanotubes (MWBA-T8). The physico-chemical properties of the modified nanocomposites were determined by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and Raman spectroscopy, while the surface morphology of the resulting nanocomposites was studied using field emission scanning electron microscopy (FESEM). All data revealed that the external surface of MWBA nanocomposites was successfully coated with the respective polymer molecules through hydrophobic and electrostatic interactions with improved thermal profiles. The cell viability assay, which was performed on cultured normal embryonic mouse fibroblast cells, confirmed their excellent biocompatibility in phosphate-buffered saline aqueous media. Overall, our findings herein suggest that the synthesized biopolymer-coated MWBA nanocomposites are promising nanomaterials for drug delivery applications as they enhance the solubility and dispersibility of CNT with significantly reduced cytotoxic effect, especially in normal cells. MDPI 2021-04-21 /pmc/articles/PMC8122267/ /pubmed/33919467 http://dx.doi.org/10.3390/polym13091362 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Tan, Julia Meihua
Bullo, Saifullah
Fakurazi, Sharida
Hussein, Mohd Zobir
Characterization of Betulinic Acid-Multiwalled Carbon Nanotubes Modified with Hydrophilic Biopolymer for Improved Biocompatibility on NIH/3T3 Cell Line
title Characterization of Betulinic Acid-Multiwalled Carbon Nanotubes Modified with Hydrophilic Biopolymer for Improved Biocompatibility on NIH/3T3 Cell Line
title_full Characterization of Betulinic Acid-Multiwalled Carbon Nanotubes Modified with Hydrophilic Biopolymer for Improved Biocompatibility on NIH/3T3 Cell Line
title_fullStr Characterization of Betulinic Acid-Multiwalled Carbon Nanotubes Modified with Hydrophilic Biopolymer for Improved Biocompatibility on NIH/3T3 Cell Line
title_full_unstemmed Characterization of Betulinic Acid-Multiwalled Carbon Nanotubes Modified with Hydrophilic Biopolymer for Improved Biocompatibility on NIH/3T3 Cell Line
title_short Characterization of Betulinic Acid-Multiwalled Carbon Nanotubes Modified with Hydrophilic Biopolymer for Improved Biocompatibility on NIH/3T3 Cell Line
title_sort characterization of betulinic acid-multiwalled carbon nanotubes modified with hydrophilic biopolymer for improved biocompatibility on nih/3t3 cell line
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122267/
https://www.ncbi.nlm.nih.gov/pubmed/33919467
http://dx.doi.org/10.3390/polym13091362
work_keys_str_mv AT tanjuliameihua characterizationofbetulinicacidmultiwalledcarbonnanotubesmodifiedwithhydrophilicbiopolymerforimprovedbiocompatibilityonnih3t3cellline
AT bullosaifullah characterizationofbetulinicacidmultiwalledcarbonnanotubesmodifiedwithhydrophilicbiopolymerforimprovedbiocompatibilityonnih3t3cellline
AT fakurazisharida characterizationofbetulinicacidmultiwalledcarbonnanotubesmodifiedwithhydrophilicbiopolymerforimprovedbiocompatibilityonnih3t3cellline
AT husseinmohdzobir characterizationofbetulinicacidmultiwalledcarbonnanotubesmodifiedwithhydrophilicbiopolymerforimprovedbiocompatibilityonnih3t3cellline