Cargando…

Selective Extraction of Nonfullerene Acceptors from Bulk-Heterojunction Layer in Organic Solar Cells for Detailed Analysis of Microstructure

Detailed analyses of the microstructures of bulk-heterojunction (BHJ) layers are important for the development of high-performance photovoltaic organic solar cells (OSCs). However, analytical methods for BHJ layer microstructures are limited because BHJ films are composed of a complex mixture of don...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakano, Masahiro, Takahara, Akira, Genda, Kenji, Shahiduzzaman, Md., Karakawa, Makoto, Taima, Tetsuya, Takahashi, Kohshin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122272/
https://www.ncbi.nlm.nih.gov/pubmed/33919451
http://dx.doi.org/10.3390/ma14092107
Descripción
Sumario:Detailed analyses of the microstructures of bulk-heterojunction (BHJ) layers are important for the development of high-performance photovoltaic organic solar cells (OSCs). However, analytical methods for BHJ layer microstructures are limited because BHJ films are composed of a complex mixture of donor and acceptor materials. In our previous study on the microstructure of a BHJ film composed of donor polymers and fullerene-based acceptors, we analyzed donor polymer-only films after selectively extracting fullerene-based acceptors from the film by atomic force microscopy (AFM). Not only was AFM suitable for a clear analysis of the morphology of the donor polymers in the BHJ film, but it also allowed us to approximate the acceptor morphology by analyzing the pores in the extracted films. Herein we report a method for the selective extraction of nonfullerene acceptors (NFAs) from a BHJ layer in OSCs and provide a detailed analysis of the remaining BHJ films based upon AFM. We found that butyl glycidyl ether is an effective solvent to extract NFAs from BHJ films without damaging the donor polymer films. By using the selective extraction method, the morphologies of NFA-free BHJ films fabricated under various conditions were studied in detail. The results may be useful for the optimization of BHJ film structures composed of NFAs and donor polymers.