Cargando…
Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data
SIMPLE SUMMARY: Here, we compared the performance of four different autoencoders: (a) vanilla, (b) sparse, (c) denoising, and (d) variational for subtype detection on four cancer types: Glioblastoma multiforme, Colon Adenocarcinoma, Kidney renal clear cell carcinoma, and Breast invasive carcinoma. M...
Autores principales: | Franco, Edian F., Rana, Pratip, Cruz, Aline, Calderón, Víctor V., Azevedo, Vasco, Ramos, Rommel T. J., Ghosh, Preetam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122584/ https://www.ncbi.nlm.nih.gov/pubmed/33921978 http://dx.doi.org/10.3390/cancers13092013 |
Ejemplares similares
-
Evaluation of the Common Molecular Basis in Alzheimer’s and Parkinson’s Diseases
por: Rana, Pratip, et al.
Publicado: (2019) -
Co-Expression Networks for Causal Gene Identification Based on RNA-Seq Data of Corynebacterium pseudotuberculosis
por: Franco, Edian F., et al.
Publicado: (2020) -
Relevant and Non-Redundant Feature Selection for Cancer Classification and Subtype Detection
por: Rana, Pratip, et al.
Publicado: (2021) -
DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping
por: Munquad, Sana, et al.
Publicado: (2023) -
Determining causal miRNAs and their signaling cascade in diseases using an influence diffusion model
por: Nalluri, Joseph J., et al.
Publicado: (2017)