Cargando…
Vision–Language–Knowledge Co-Embedding for Visual Commonsense Reasoning
Visual commonsense reasoning is an intelligent task performed to decide the most appropriate answer to a question while providing the rationale or reason for the answer when an image, a natural language question, and candidate responses are given. For effective visual commonsense reasoning, both the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122639/ https://www.ncbi.nlm.nih.gov/pubmed/33919196 http://dx.doi.org/10.3390/s21092911 |
_version_ | 1783692672164167680 |
---|---|
author | Lee, JaeYun Kim, Incheol |
author_facet | Lee, JaeYun Kim, Incheol |
author_sort | Lee, JaeYun |
collection | PubMed |
description | Visual commonsense reasoning is an intelligent task performed to decide the most appropriate answer to a question while providing the rationale or reason for the answer when an image, a natural language question, and candidate responses are given. For effective visual commonsense reasoning, both the knowledge acquisition problem and the multimodal alignment problem need to be solved. Therefore, we propose a novel Vision–Language–Knowledge Co-embedding (ViLaKC) model that extracts knowledge graphs relevant to the question from an external knowledge base, ConceptNet, and uses them together with the input image to answer the question. The proposed model uses a pretrained vision–language–knowledge embedding module, which co-embeds multimodal data including images, natural language texts, and knowledge graphs into a single feature vector. To reflect the structural information of the knowledge graph, the proposed model uses the graph convolutional neural network layer to embed the knowledge graph first and then uses multi-head self-attention layers to co-embed it with the image and natural language question. The effectiveness and performance of the proposed model are experimentally validated using the VCR v1.0 benchmark dataset. |
format | Online Article Text |
id | pubmed-8122639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81226392021-05-16 Vision–Language–Knowledge Co-Embedding for Visual Commonsense Reasoning Lee, JaeYun Kim, Incheol Sensors (Basel) Article Visual commonsense reasoning is an intelligent task performed to decide the most appropriate answer to a question while providing the rationale or reason for the answer when an image, a natural language question, and candidate responses are given. For effective visual commonsense reasoning, both the knowledge acquisition problem and the multimodal alignment problem need to be solved. Therefore, we propose a novel Vision–Language–Knowledge Co-embedding (ViLaKC) model that extracts knowledge graphs relevant to the question from an external knowledge base, ConceptNet, and uses them together with the input image to answer the question. The proposed model uses a pretrained vision–language–knowledge embedding module, which co-embeds multimodal data including images, natural language texts, and knowledge graphs into a single feature vector. To reflect the structural information of the knowledge graph, the proposed model uses the graph convolutional neural network layer to embed the knowledge graph first and then uses multi-head self-attention layers to co-embed it with the image and natural language question. The effectiveness and performance of the proposed model are experimentally validated using the VCR v1.0 benchmark dataset. MDPI 2021-04-21 /pmc/articles/PMC8122639/ /pubmed/33919196 http://dx.doi.org/10.3390/s21092911 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, JaeYun Kim, Incheol Vision–Language–Knowledge Co-Embedding for Visual Commonsense Reasoning |
title | Vision–Language–Knowledge Co-Embedding for Visual Commonsense Reasoning |
title_full | Vision–Language–Knowledge Co-Embedding for Visual Commonsense Reasoning |
title_fullStr | Vision–Language–Knowledge Co-Embedding for Visual Commonsense Reasoning |
title_full_unstemmed | Vision–Language–Knowledge Co-Embedding for Visual Commonsense Reasoning |
title_short | Vision–Language–Knowledge Co-Embedding for Visual Commonsense Reasoning |
title_sort | vision–language–knowledge co-embedding for visual commonsense reasoning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122639/ https://www.ncbi.nlm.nih.gov/pubmed/33919196 http://dx.doi.org/10.3390/s21092911 |
work_keys_str_mv | AT leejaeyun visionlanguageknowledgecoembeddingforvisualcommonsensereasoning AT kimincheol visionlanguageknowledgecoembeddingforvisualcommonsensereasoning |