Cargando…
Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module
Pavement crack detection is essential for safe driving. The traditional manual crack detection method is highly subjective and time-consuming. Hence, an automatic pavement crack detection system is needed to facilitate this progress. However, this is still a challenging task due to the complex topol...
Autores principales: | Qiao, Wenting, Liu, Qiangwei, Wu, Xiaoguang, Ma, Biao, Li, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122701/ https://www.ncbi.nlm.nih.gov/pubmed/33919128 http://dx.doi.org/10.3390/s21092902 |
Ejemplares similares
-
scSE-NL V-Net: A Brain Tumor Automatic Segmentation Method Based on Spatial and Channel “Squeeze-and-Excitation” Network With Non-local Block
por: Zhou, Juhua, et al.
Publicado: (2022) -
Automated segmentation and diagnosis of pneumothorax on chest X-rays with fully convolutional multi-scale ScSE-DenseNet: a retrospective study
por: Wang, Qingfeng, et al.
Publicado: (2020) -
Automatic Crack Detection on Road Pavements Using Encoder-Decoder Architecture
por: Fan, Zhun, et al.
Publicado: (2020) -
RUC-Net: A Residual-Unet-Based Convolutional Neural Network for Pixel-Level Pavement Crack Segmentation
por: Yu, Gui, et al.
Publicado: (2022) -
A Pavement Crack Detection Method Based on Multiscale Attention and HFS
por: Li, Chun, et al.
Publicado: (2022)