Cargando…
Chemosensitive Thin Films Active to Ammonia Vapours
The paper presents various dispersive systems developed for sensing toxic substance—ammonia. Polycarbonate dissolved in methylene chloride was used as a polymer matrix, which was enriched with: multi-walled carbon nanotubes (MWCNs), reduced graphene oxide (rGO) and conductive polymer (polyaniline—PA...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122796/ https://www.ncbi.nlm.nih.gov/pubmed/33922342 http://dx.doi.org/10.3390/s21092948 |
Sumario: | The paper presents various dispersive systems developed for sensing toxic substance—ammonia. Polycarbonate dissolved in methylene chloride was used as a polymer matrix, which was enriched with: multi-walled carbon nanotubes (MWCNs), reduced graphene oxide (rGO) and conductive polymer (polyaniline—PANi). Dispersive systems were applied to the prefabricated substrates with comb electrodes by two methods: spraying and drop-casting, forming an active chemosensitive to ammonia vapours films. The spraying method involved applying the dispersion to the substrate by an aerograph for a specific time, whereas drop-casting involves depositing of the produced dispersive systems using a precision automatic pipette. The electrical responses of the obtained films were examined for nominal concentrations of ammonia vapours. Different types of dispersions with various composition were tested, the relationships between individual compounds and ammonia were analysed and the most promising dispersions were selected. Sensor containing rGO deposited by drop-casting revealed the highest change in the resistance (14.21%). |
---|