Cargando…
Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material
A series of bio-based hydrophobically modified isosorbide dimethacrylates, with para-, meta-, and ortho- benzoate aromatic spacers (ISBGBMA), are synthesized, characterized, and evaluated as potential dental restorative resins. The new monomers, isosorbide 2,5-bis(4-glyceryloxybenzoate) dimethacryla...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122847/ https://www.ncbi.nlm.nih.gov/pubmed/33922355 http://dx.doi.org/10.3390/ma14092139 |
_version_ | 1783692733914808320 |
---|---|
author | Marie, Bilal Clark, Raymond Gillece, Tim Ozkan, Seher Jaffe, Michael Ravindra, Nuggehalli M. |
author_facet | Marie, Bilal Clark, Raymond Gillece, Tim Ozkan, Seher Jaffe, Michael Ravindra, Nuggehalli M. |
author_sort | Marie, Bilal |
collection | PubMed |
description | A series of bio-based hydrophobically modified isosorbide dimethacrylates, with para-, meta-, and ortho- benzoate aromatic spacers (ISBGBMA), are synthesized, characterized, and evaluated as potential dental restorative resins. The new monomers, isosorbide 2,5-bis(4-glyceryloxybenzoate) dimethacrylate (ISB4GBMA), isosorbide 2,5-bis(3-glyceryloxybenzoate) dimethacrylate (ISB3GBMA), and isosorbide 2,5-bis(2-glyceryloxybenzoate) dimethacrylate (ISB2GBMA), are mixed with triethylene glycol dimethacrylate (TEGDMA) and photopolymerized. The resulting polymers are evaluated for the degree of monomeric conversion, polymerization shrinkage, water sorption, glass transition temperature, and flexural strength. Isosorbide glycerolate dimethacrylate (ISDGMA) is synthesized, and Bisphenol A glycerolate dimethacrylate (BisGMA) is prepared, and both are evaluated as a reference. Poly(ISBGBMA/TEGDMA) series shows lower water sorption (39–44 µg/mm(3)) over Poly(ISDGMA/TEGDMA) (73 µg/mm(3)) but higher than Poly(BisGMA/TEGDMA) (26 µg/mm(3)). Flexural strength is higher for Poly(ISBGBMA/TEGDMA) series (37–45 MPa) over Poly(ISDGMA/TEGDMA) (10 MPa) and less than Poly(BisGMA/TEGDMA) (53 MPa) after immersion in phosphate-buffered saline (DPBS) for 24 h. Poly(ISB2GBMA/TEGDMA) has the highest glass transition temperature at 85 °C, and its monomeric mixture has the lowest viscosity at 0.62 Pa·s, among the (ISBGBMA/TEGDMA) polymers and monomer mixtures. Collectively, this data suggests that the ortho ISBGBMA monomer is a potential bio-based, BPA-free replacement for BisGMA, and could be the focus for future study. |
format | Online Article Text |
id | pubmed-8122847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81228472021-05-16 Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material Marie, Bilal Clark, Raymond Gillece, Tim Ozkan, Seher Jaffe, Michael Ravindra, Nuggehalli M. Materials (Basel) Article A series of bio-based hydrophobically modified isosorbide dimethacrylates, with para-, meta-, and ortho- benzoate aromatic spacers (ISBGBMA), are synthesized, characterized, and evaluated as potential dental restorative resins. The new monomers, isosorbide 2,5-bis(4-glyceryloxybenzoate) dimethacrylate (ISB4GBMA), isosorbide 2,5-bis(3-glyceryloxybenzoate) dimethacrylate (ISB3GBMA), and isosorbide 2,5-bis(2-glyceryloxybenzoate) dimethacrylate (ISB2GBMA), are mixed with triethylene glycol dimethacrylate (TEGDMA) and photopolymerized. The resulting polymers are evaluated for the degree of monomeric conversion, polymerization shrinkage, water sorption, glass transition temperature, and flexural strength. Isosorbide glycerolate dimethacrylate (ISDGMA) is synthesized, and Bisphenol A glycerolate dimethacrylate (BisGMA) is prepared, and both are evaluated as a reference. Poly(ISBGBMA/TEGDMA) series shows lower water sorption (39–44 µg/mm(3)) over Poly(ISDGMA/TEGDMA) (73 µg/mm(3)) but higher than Poly(BisGMA/TEGDMA) (26 µg/mm(3)). Flexural strength is higher for Poly(ISBGBMA/TEGDMA) series (37–45 MPa) over Poly(ISDGMA/TEGDMA) (10 MPa) and less than Poly(BisGMA/TEGDMA) (53 MPa) after immersion in phosphate-buffered saline (DPBS) for 24 h. Poly(ISB2GBMA/TEGDMA) has the highest glass transition temperature at 85 °C, and its monomeric mixture has the lowest viscosity at 0.62 Pa·s, among the (ISBGBMA/TEGDMA) polymers and monomer mixtures. Collectively, this data suggests that the ortho ISBGBMA monomer is a potential bio-based, BPA-free replacement for BisGMA, and could be the focus for future study. MDPI 2021-04-22 /pmc/articles/PMC8122847/ /pubmed/33922355 http://dx.doi.org/10.3390/ma14092139 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Marie, Bilal Clark, Raymond Gillece, Tim Ozkan, Seher Jaffe, Michael Ravindra, Nuggehalli M. Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material |
title | Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material |
title_full | Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material |
title_fullStr | Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material |
title_full_unstemmed | Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material |
title_short | Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material |
title_sort | hydrophobically modified isosorbide dimethacrylates as a bisphenol-a (bpa)-free dental filling material |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122847/ https://www.ncbi.nlm.nih.gov/pubmed/33922355 http://dx.doi.org/10.3390/ma14092139 |
work_keys_str_mv | AT mariebilal hydrophobicallymodifiedisosorbidedimethacrylatesasabisphenolabpafreedentalfillingmaterial AT clarkraymond hydrophobicallymodifiedisosorbidedimethacrylatesasabisphenolabpafreedentalfillingmaterial AT gillecetim hydrophobicallymodifiedisosorbidedimethacrylatesasabisphenolabpafreedentalfillingmaterial AT ozkanseher hydrophobicallymodifiedisosorbidedimethacrylatesasabisphenolabpafreedentalfillingmaterial AT jaffemichael hydrophobicallymodifiedisosorbidedimethacrylatesasabisphenolabpafreedentalfillingmaterial AT ravindranuggehallim hydrophobicallymodifiedisosorbidedimethacrylatesasabisphenolabpafreedentalfillingmaterial |