Cargando…

Simulation and Optimization of SNAP-Taper Coupling System in Displacement Sensing

Sensing applications based on whispering gallery mode (WGM) microcavities have attracted extensive attention recently, especially in displacement sensing applications. However, the traditional displacement sensing scheme based on shift in a single resonance wavelength, has a lot of drawbacks. Herein...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jian, Dong, Yongchao, Wang, Han, Sun, Penghui, Zeng, Xueliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122849/
https://www.ncbi.nlm.nih.gov/pubmed/33922319
http://dx.doi.org/10.3390/s21092947
Descripción
Sumario:Sensing applications based on whispering gallery mode (WGM) microcavities have attracted extensive attention recently, especially in displacement sensing applications. However, the traditional displacement sensing scheme based on shift in a single resonance wavelength, has a lot of drawbacks. Herein, a novel displacement sensing scheme based on the surface nanoscale axial photonics (SNAP) is proposed to achieve a wide range and high-resolution displacement sensor through analyzing the transmittance of multiple axial modes. By analyzing the surface plot of the resonance spectrum with different coupling positions, the ideal coupling parameters and ERV for displacement sensing are obtained. In the following, displacement sensing with high sensitivity and a wide range is theoretically realized through adjusting the sensitivity threshold and the number of modes. Finally, we present our views on the current challenges and the future development of the displacement sensing based on an SNAP resonator. We believe that a comprehensive understanding on this sensing scheme would significantly contribute to the advancement of the SNAP resonator for a broad range of applications.